1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2015 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import numpy
import logging
from . import SGModule
_logger = logging.getLogger(__name__)
class SimpleMath(object):
def derivate(self,xdata,ydata, xlimits=None):
x=numpy.array(xdata, copy=False, dtype=numpy.float)
y=numpy.array(ydata, copy=False, dtype=numpy.float)
if xlimits is not None:
i1=numpy.nonzero((xdata>=xlimits[0])&\
(xdata<=xlimits[1]))[0]
x=numpy.take(x,i1)
y=numpy.take(y,i1)
i1 = numpy.argsort(x)
x=numpy.take(x,i1)
y=numpy.take(y,i1)
deltax=x[1:] - x[:-1]
i1=numpy.nonzero(abs(deltax)>0.0000001)[0]
x=numpy.take(x, i1)
y=numpy.take(y, i1)
minDelta = deltax[deltax > 0]
if minDelta.size:
minDelta = minDelta.min()
else:
# all points are equal
minDelta = 1.0
xInter = numpy.arange(x[0]-minDelta,x[-1]+minDelta,minDelta)
yInter = numpy.interp(xInter, x, y, left=y[0], right=y[-1])
if len(yInter) > 499:
npoints = 5
else:
npoints = 3
degree = 1
order = 1
coeff = SGModule.calc_coeff(npoints, degree, order)
N = int(numpy.size(coeff-1)/2)
yInterPrime = numpy.convolve(yInter, coeff, mode='valid')/minDelta
i1 = numpy.nonzero((x>=xInter[N+1]) & (x <= xInter[-N]))[0]
x = numpy.take(x, i1)
result = numpy.interp(x, xInter[(N+1):-N],
yInterPrime[1:],
left=yInterPrime[1],
right=yInterPrime[-1])
return x, result
def average(self, xarr, yarr, x=None):
"""
:param xarr : List containing x values in 1-D numpy arrays
:param yarr : List containing y Values in 1-D numpy arrays
:param x: x values of the final average spectrum (or None)
:return: Average spectrum. In case of invalid input (None, None) tuple is returned.
From the spectra given in xarr & yarr, the method determines the overlap in
the x-range. For spectra with unequal x-ranges, the method interpolates all
spectra on the values given in x if provided or the first curve and averages them.
"""
if (len(xarr) != len(yarr)) or\
(len(xarr) == 0) or (len(yarr) == 0):
_logger.debug('specAverage -- invalid input!\n'
'Array lengths do not match or are 0')
return None, None
same = True
if x == None:
SUPPLIED = False
x0 = xarr[0]
else:
SUPPLIED = True
x0 = x
for x in xarr:
if len(x0) == len(x):
if numpy.all(x0 == x):
pass
else:
same = False
break
else:
same = False
break
xsort = []
ysort = []
for (x,y) in zip(xarr, yarr):
if numpy.all(numpy.diff(x) > 0.):
# All values sorted
xsort.append(x)
ysort.append(y)
else:
# Sort values
mask = numpy.argsort(x)
xsort.append(x.take(mask))
ysort.append(y.take(mask))
if SUPPLIED:
xmin0 = x0.min()
xmax0 = x0.max()
else:
xmin0 = xsort[0][0]
xmax0 = xsort[0][-1]
if (not same) or (not SUPPLIED):
# Determine global xmin0 & xmax0
for x in xsort:
xmin = x.min()
xmax = x.max()
if xmin > xmin0:
xmin0 = xmin
if xmax < xmax0:
xmax0 = xmax
if xmax <= xmin:
_logger.debug('specAverage -- \n'
'No overlap between spectra!')
return numpy.array([]), numpy.array([])
# make sure x0 is sorted
mask = numpy.argsort(x0)
x0 = numpy.take(x0, mask)
# Clip xRange to maximal overlap in spectra
mask = numpy.nonzero((x0 >= xmin0) &
(x0 <= xmax0))[0]
xnew = numpy.take(x0, mask)
ynew = numpy.zeros(len(xnew))
# Perform average
for (x, y) in zip(xsort, ysort):
if same:
ynew += y
else:
yinter = numpy.interp(xnew, x, y)
ynew += numpy.asarray(yinter)
num = len(yarr)
ynew /= num
idx = numpy.isfinite(ynew)
return xnew[idx], ynew[idx]
def smooth(self, *var, **kw):
"""
smooth(self,*vars,**kw)
Usage: self.smooth(y)
self.smooth(y=y)
self.smooth()
"""
if 'y' in kw:
ydata=kw['y']
elif len(var) > 0:
ydata=var[0]
else:
ydata=self.y
f=[0.25,0.5,0.25]
result=numpy.array(ydata, copy=False, dtype=numpy.float)
if len(result) > 1:
result[1:-1]=numpy.convolve(result,f,mode=0)
result[0]=0.5*(result[0]+result[1])
result[-1]=0.5*(result[-1]+result[-2])
return result
if __name__ == "__main__":
x = numpy.arange(100.)*0.25
y = x*x + 2 * x
a = SimpleMath()
#print(a.average(x,y))
xplot, yprime = a.derivate(x, y)
print("Found:")
for i in range(0,10):
print("x = %f y'= %f expected = %f" % (xplot[i], yprime[i], 2*xplot[i]+2))
|