1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2020 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import sys
import os
import time
import logging
import numpy
from . import ClassMcaTheory
from PyMca5.PyMcaCore import SpecFileLayer
from PyMca5.PyMcaCore import EdfFileLayer
from PyMca5.PyMcaIO import EdfFile
from PyMca5.PyMcaIO import LuciaMap
from PyMca5.PyMcaIO import AifiraMap
from PyMca5.PyMcaIO import EDFStack
from PyMca5.PyMcaIO import LispixMap
from PyMca5.PyMcaIO import NumpyStack
try:
import h5py
from PyMca5.PyMcaIO import HDF5Stack1D
HDF5SUPPORT = True
except ImportError:
HDF5SUPPORT = False
from PyMca5.PyMcaIO import ConfigDict
from . import ConcentrationsTool
from .XRFBatchFitOutput import OutputBuffer
_logger = logging.getLogger(__name__)
def getRootName(filelist=None):
if filelist is None:
filelist = self._filelist
first = os.path.basename(filelist[ 0])
last = os.path.basename(filelist[-1])
if first == last:
return os.path.splitext(first)[0]
name1, ext1 = os.path.splitext(first)
name2, ext2 = os.path.splitext(last)
i0 = 0
for i in range(len(name1)):
if i >= len(name2):
break
elif name1[i] == name2[i]:
pass
else:
break
i0 = i
for i in range(i0, len(name1)):
if i >= len(name2):
break
elif name1[i] != name2[i]:
pass
else:
break
i1 = i
if i1 > 0:
delta = 1
while (i1-delta):
if (last[i1-delta] in ['0', '1', '2',
'3', '4', '5',
'6', '7', '8',
'9']):
delta = delta + 1
else:
if delta > 1:
delta = delta - 1
break
rootname = name1[0:]+"_to_"+name2[(i1-delta):]
else:
rootname = name1[0:]+"_to_"+name2[0:]
return rootname
class McaAdvancedFitBatch(object):
"""
XRF or ROI fit of a list of files, representing XRF data from a 2D map.
It is currently assumed that one file contains either the data from the
entire map (one .h5 file) or the data from one row (multiple .edf files).
"""
def __init__(self, initdict, filelist=None, outputdir=None,
roifit=False, roiwidth=100,
overwrite=1, filestep=1, mcastep=1,
fitfiles=0, fitimages=1,
concentrations=0, fitconcfile=1,
filebeginoffset=0, fileendoffset=0,
mcaoffset=0, chunk=None,
selection=None, lock=None, nosave=None,
quiet=False, outbuffer=None,
**outbufferkwargs):
"""
Range of filelist indices to be processed:
.. code:: python
range(filebeginoffset, len(filelist)-fileendoffset, filestep)
Range of column indices to be processed for each file:
.. code:: python
range(mcaoffset, nColumns, mcastep)
"""
#for the time being the concentrations are bound to the .fit files
#that is not necessary, but it will be correctly implemented in
#future releases
self._lock = lock
self.setFileList(filelist)
self.pleaseBreak = 0 # stop the processing of filelist
self.roiFit = roifit
self.roiWidth = roiwidth
self.selection = selection
self.quiet = quiet
self.fitFiles = fitfiles
self.fitConcFile = fitconcfile
self._concentrations = concentrations
# Assume each file in filelist = 1 row of XRF spectra
# Files to be fitted: range(filebeginoffset, nFiles-fileEndOffset, filestep)
# Columns to be fitted: range(mcaOffset, nColumns, mcaStep)
self.fileBeginOffset = filebeginoffset
self.fileEndOffset = fileendoffset
self.fileStep = filestep
self.mcaStep = mcastep
self.mcaOffset = mcaoffset
self.chunk = chunk
if isinstance(initdict, list):
self.mcafit = ClassMcaTheory.McaTheory(initdict[mcaoffset])
self.__configList = initdict
self.__currentConfig = mcaoffset
else:
self.__configList = [initdict]
self.__currentConfig = 0
self.mcafit = ClassMcaTheory.McaTheory(initdict)
self.__concentrationsKeys = []
if self._concentrations:
self._tool = ConcentrationsTool.ConcentrationsTool()
self._toolConversion = ConcentrationsTool.ConcentrationsConversion()
self.outbuffer = outbuffer
self.overwrite = overwrite
self.nosave = nosave
self.outputdir = outputdir
self.outbufferkwargs = outbufferkwargs
if fitimages:
self._initOutputBuffer()
@property
def useExistingFiles(self):
return not self.overwrite
@property
def nosave(self):
return self._nosave
@nosave.setter
def nosave(self, value):
self._nosave = bool(value)
if self.outbuffer is not None:
self.outbuffer.nosave = self._nosave
@property
def overwrite(self):
return self._overwrite
@overwrite.setter
def overwrite(self, value):
self._overwrite = bool(value)
if self.outbuffer is not None:
self.outbuffer.overwrite = self._overwrite
def _initOutputBuffer(self):
if self.outbuffer is None:
self.outbuffer = OutputBuffer(outputDir=self.outputdir,
outputRoot=self._rootname,
fileEntry=self._rootname,
overwrite=self.overwrite,
nosave=self.nosave,
suffix=self._outputSuffix(),
**self.outbufferkwargs)
# Always save figures-of-merit (HDF5: all, EDF/CSV: chisq only)
self.outbuffer.saveFOM = True
self.outbuffer['configuration'] = self.mcafit.getConfiguration()
def _outputSuffix(self):
suffix = ""
if self.roiFit:
suffix = "_%04deVROI" % self.roiWidth
# REMARK: makes merging difficult and not necessary anyway
#if (self.fileStep > 1) or (self.mcaStep > 1):
# suffix += "_filestep_%02d_mcastep_%02d" %\
# (self.fileStep, self.mcaStep)
if self.chunk is not None:
suffix += "_%06d_partial" % self.chunk
return suffix
def setFileList(self, filelist=None):
self._rootname = ""
if filelist is None:
filelist = []
if type(filelist) not in [type([]), type((2,))]:
filelist = [filelist]
self._filelist = filelist
if len(filelist):
if type(filelist[0]) is not numpy.ndarray:
self._rootname = getRootName(filelist)
@property
def outputdir(self):
return self._outputdir
@outputdir.setter
def outputdir(self, value):
if value is None:
value = os.getcwd()
self._outputdir = value
def processList(self):
if self.outbuffer is None:
self._processList()
else:
with self.outbuffer.saveContext():
self._processList()
self.onEnd()
def _processList(self):
# Initialize list processing variables
self.counter = 0 # spectrum counter
self.__ncols = 0
self.__nrows = 0
self.__stack = None
self._fitlistfile = None
# Loop over the files in filelist (1 file = 1 row in image)
start = self.fileBeginOffset
stop = len(self._filelist)-self.fileEndOffset
for i in range(start, stop, self.fileStep):
if not self.roiFit:
if len(self.__configList) > 1:
if i != 0:
self.mcafit = ClassMcaTheory.McaTheory(self.__configList[i])
self.__currentConfig = i
# TODO: outbuffer does not support multiple configurations
# Only the first one is saved.
self.mcafit.enableOptimizedLinearFit() # TODO: why????
# Load file
inputfile = self._filelist[i]
self.__row = i
self.onNewFile(inputfile, self._filelist)
self.filehandle = self.getFileHandle(inputfile)
if self.pleaseBreak:
break
if self.__stack is None:
self.__stack = False
if hasattr(self.filehandle, "info"):
if "SourceType" in self.filehandle.info:
if self.filehandle.info["SourceType"] in\
["EdfFileStack", "HDF5Stack1D"]:
self.__stack = True
# Fit spectra in current file
if self.__stack:
self.__processStack()
if self._HDF5:
# The complete stack has been analyzed
# TODO: what if the user gave more than one HDF5 file?
break
else:
_logger.warning("Multiple stacks may no work yet")
# TODO: I doubt this works for multiple non-HDF5 stacks
# because __processStack restarts from __row = 0
else:
self.__processOneFile()
# Needed for cleanup
self.filehandle = None
if self.counter:
# Finish list of FIT files
if not self.roiFit and self.fitFiles and \
self._fitlistfile is not None:
self._fitlistfile.write(']\n')
self._fitlistfile.close()
def getFileHandle(self, inputfile):
try:
self._HDF5 = False
if type(inputfile) == numpy.ndarray:
return NumpyStack.NumpyStack(inputfile)
if HDF5SUPPORT:
if h5py.is_hdf5(inputfile):
self._HDF5 = True
try:
# if (len(self._filelist) == 1) && (self.mcaStep > 1)
# it should attempt to avoid loading many times
# the stack into memory in case of multiple processes
return HDF5Stack1D.HDF5Stack1D(self._filelist,
self.selection)
except:
raise
ffile = self.__tryEdf(inputfile)
if ffile is None:
ffile = self.__tryLucia(inputfile)
if ffile is None:
if inputfile[-3:] == "DAT":
ffile = self.__tryAifira(inputfile)
if ffile is None:
if LispixMap.isLispixMapFile(inputfile):
ffile = LispixMap.LispixMap(inputfile, native=False)
if ffile is None:
del ffile
ffile = SpecFileLayer.SpecFileLayer()
ffile.SetSource(inputfile)
return ffile
except:
_logger.critical("I do not know what to do with file %s" % inputfile)
raise
@property
def filehandle(self):
return self._filehandle
@filehandle.setter
def filehandle(self, value):
try:
del self._filehandle.Source
except AttributeError:
pass
self._filehandle = value
def onNewFile(self, ffile, filelist):
if not self.quiet:
self.__log(ffile)
def onImage(self, image, imagelist):
pass
def onMca(self, imca, nmca, filename=None, key=None, info=None):
pass
def onEnd(self):
pass
def __log(self,text):
_logger.info(text)
def __tryEdf(self,inputfile):
try:
ffile = EdfFileLayer.EdfFileLayer(fastedf=0)
ffile.SetSource(inputfile)
fileinfo = ffile.GetSourceInfo()
if fileinfo['KeyList'] == []:
ffile=None
elif len(self._filelist) == 1:
#Is it a Diamond stack?
if len(fileinfo['KeyList']) > 1:
info, data = ffile.LoadSource(fileinfo['KeyList'][0])
shape = data.shape
if len(shape) == 2:
if min(shape) == 1:
#It is a Diamond Stack
ffile = EDFStack.EDFStack(inputfile)
return ffile
except:
return None
def __tryLucia(self, inputfile):
f = open(inputfile, "rb")
line = f.read(10)
f.close()
ffile = None
if line.startswith(b'#\tDate:'):
ffile = LuciaMap.LuciaMap(inputfile)
return ffile
def __tryAifira(self, inputfile):
f = open(inputfile,"rb")
line = f.read(3)
f.close()
if '#' in line:
#specfile
return None
ffile = None
try:
ffile = AifiraMap.AifiraMap(inputfile)
except:
ffile = None
return ffile
def __processStack(self):
"""
Fit spectra from one file, which corresponds to the spectra
from the entire image.
"""
stack = self.filehandle
info = stack.info
data = stack.data
xStack = None
if hasattr(stack, "x"):
if stack.x not in [None, []]:
if type(stack.x) == type([]):
xStack = stack.x[0]
else:
_logger.warning("THIS SHOULD NOT BE USED")
xStack = stack.x
nrows = stack.info['Dim_1']
self.__nrows = nrows
self.__ncols = stack.info['Dim_2']
mcaIndices = list(range(self.mcaOffset, self.__ncols, self.mcaStep))
nmcaToFit = len(mcaIndices)
keylist = ["1.1"] * nrows
for i in range(nrows):
keylist[i] = "1.%04d" % i
for i in range(nrows):
if self.pleaseBreak:
break
self.onImage(keylist[i], keylist)
self.__row = i
try:
cache_data = data[i, :, :]
except:
_logger.error("Error reading dataset row %d" % i)
_logger.error(str(sys.exc_info()))
_logger.error("Batch resumed")
continue
for imca, mcaIndex in enumerate(mcaIndices):
if self.pleaseBreak:
break
self.__col = mcaIndex
mcadata = cache_data[mcaIndex, :]
y0 = numpy.array(mcadata)
if xStack is None:
if 'MCA start ch' in info:
xmin = float(info['MCA start ch'])
else:
xmin = 0.0
x = numpy.arange(len(y0))*1.0 + xmin
else:
x = xStack
#key = "%s.%s.%02d.%02d" % (scan,order,row,col)
key = "%s.%04d" % (keylist[i], mcaIndex)
#I only process the first file of the stack?
filename = os.path.basename(info['SourceName'][0])
infoDict = {}
infoDict['SourceName'] = info['SourceName']
infoDict['Key'] = key
if "McaLiveTime" in info:
infoDict["McaLiveTime"] = \
info["McaLiveTime"][i * self.__ncols + mcaIndex]
self.__processOneMca(x, y0, filename, key, info=infoDict)
self.onMca(imca, nmcaToFit, filename=filename,
key=key, info=infoDict)
def __processOneFile(self):
"""
Fit spectra from one file, which corresponds to the spectra
from one image row.
"""
ffile = self.filehandle
fileinfo = ffile.GetSourceInfo()
if self.counter == 0:
self.__nMcaPerScan = None
# In case of multiple scans:
# assume they have the same number of spectra
for scankey in fileinfo['KeyList']:
if self.pleaseBreak:
break
self.onImage(scankey, fileinfo['KeyList'])
scan, order = scankey.split(".")
info, data = ffile.LoadSource(scankey)
if info['SourceType'] == "EdfFile":
# nMcaChan = info['Dim_1'])
self.__ncols = int(info['Dim_2'])
mcaIndices = list(range(self.mcaOffset, self.__ncols, self.mcaStep))
nmcaToFit = len(mcaIndices)
for imca, mcaIndex in enumerate(mcaIndices):
if self.pleaseBreak:
break
self.__col = mcaIndex
mcadata = data[mcaIndex, :]
if 'MCA start ch' in info:
xmin = float(info['MCA start ch'])
else:
xmin = 0.0
key = "%s.%s.%04d" % (scan, order, mcaIndex)
y0 = numpy.array(mcadata)
x = numpy.arange(len(y0))*1.0 + xmin
filename = os.path.basename(info['SourceName'])
infoDict = {}
infoDict['SourceName'] = info['SourceName']
infoDict['Key'] = key
infoDict['McaLiveTime'] = info.get('McaLiveTime', None)
self.__processOneMca(x, y0, filename, key, info=infoDict)
self.onMca(imca, nmcaToFit, filename=filename,
key=key, info=infoDict)
else:
if info['NbMca'] == 0:
continue
scan_key = "%s.%s" % (scan, order)
scan_obj = ffile.Source.select(scan_key)
if self.__nMcaPerScan is None:
self.__nMcaPerScan = info['NbMca'] * 1
self.__chann0List = numpy.zeros(info['NbMcaDet'])
chan0list = scan_obj.header('@CHANN')
if len(chan0list):
for i in range(info['NbMcaDet']):
self.__chann0List[i] = int(chan0list[i].split()[2])
if (len(fileinfo['KeyList']) == 2) and (fileinfo['KeyList'].index(scan_key) == 1):
# "pseudo": two scans and only the second contains MCA's
self.__ncols = self.__nMcaPerScan
else:
self.__ncols = self.__nMcaPerScan*len(fileinfo['KeyList'])
else:
# Skip scan when not enough spectra
# When more spectra than the first scan: skip the excess spectra
if (info['NbMca'] * 1) < self.__nMcaPerScan:
_logger.error('Skip scan {} (not enough MCA spectra)'
.format(repr(scan_key)))
continue
mcaIndices = list(range(self.mcaOffset, self.__nMcaPerScan, self.mcaStep))
nmcaToFit = len(mcaIndices)
multipleScans = self.__ncols > self.__nMcaPerScan
for imca, mcaIndex in enumerate(mcaIndices):
if self.pleaseBreak:
break
self.__col = mcaIndex
if multipleScans:
self.__col += fileinfo['KeyList'].index(scan_key) * \
self.__nMcaPerScan
point = int(mcaIndex/info['NbMcaDet']) + 1
mca = (mcaIndex % info['NbMcaDet']) + 1
key = "%s.%s.%05d.%d" % (scan, order, point, mca)
autotime = self.mcafit.config["concentrations"].get("useautotime", False)
if autotime:
# slow info reading methods needed to access time
mcainfo, mcadata = ffile.LoadSource(key)
info['McaLiveTime'] = mcainfo.get('McaLiveTime', None)
else:
mcadata = scan_obj.mca(mcaIndex+1)
y0 = numpy.array(mcadata)
x = numpy.arange(len(y0))*1.0 + self.__chann0List[mca-1]
filename = os.path.basename(info['SourceName'])
infoDict = {}
infoDict['SourceName'] = info['SourceName']
infoDict['Key'] = key
infoDict['McaLiveTime'] = info.get('McaLiveTime', None)
self.__processOneMca(x, y0, filename, key, info=infoDict)
self.onMca(imca, nmcaToFit, filename=filename,
key=key, info=infoDict)
def __getFitFile(self, filename, key, createdirs=False):
fitdir = self.os_path_join(self.outputdir, "FIT")
if createdirs:
if not os.path.exists(fitdir):
try:
os.makedirs(fitdir)
except:
_logger.error("I could not create directory %s" % fitdir)
return
fitdir = self.os_path_join(fitdir, filename+"_FITDIR")
if createdirs:
if not os.path.exists(fitdir):
try:
os.makedirs(fitdir)
except:
_logger.error("I could not create directory %s" % fitdir)
return
if not os.path.isdir(fitdir):
_logger.error("%s does not seem to be a valid directory" % fitdir)
return
fitfilename = filename + "_" + key + ".fit"
fitfilename = self.os_path_join(fitdir, fitfilename)
return fitfilename
def __getFitConcFile(self):
if self.chunk is not None:
con_extension = "_%06d_partial_concentrations.txt" % self.chunk
else:
con_extension = "_concentrations.txt"
if not os.path.exists(self.outputdir):
os.makedirs(self.outputdir)
cfitfilename = self.os_path_join(self.outputdir,
self._rootname + con_extension)
if self.counter == 0:
if os.path.exists(cfitfilename):
try:
os.remove(cfitfilename)
except:
_logger.error("I could not delete existing concentrations file %s" %\
cfitfilename)
return cfitfilename
def os_path_join(self, a, b):
try:
outfile=os.path.join(a, b)
except UnicodeDecodeError:
toBeDone = True
if sys.platform == 'win32':
try:
outfile=os.path.join(a.decode('mbcs'),
b.decode('mbcs'))
toBeDone = False
except UnicodeDecodeError:
pass
if toBeDone:
try:
outfile = os.path.join(a.decode('utf-8'),
a.decode('utf-8'))
except UnicodeDecodeError:
outfile = os.path.join(a.decode('latin-1'),
a.decode('latin-1'))
return outfile
def __processOneMca(self,x,y,filename,key,info=None):
if not self.__nrows:
self.__nrows = len(self._filelist)
bOutput = self.outbuffer is not None and \
self.__ncols and self.__nrows
if self.roiFit:
result = self.__roiOneMca(x,y)
if bOutput and result is not None:
if not self.outbuffer.hasAllocatedMemory():
self._allocateMemoryRoiFit(result)
self._storeRoiFitResult(result)
else:
result, concentrations = self.__fitOneMca(x,y,filename,key,info=info)
if bOutput and result is not None:
result['ydata0'] = y
if not self.outbuffer.hasAllocatedMemory():
if self._concentrations and (concentrations is None):
# if concentrations were requested but unsuccessful on the first MCA
# the memory allocation crashes the program
_logger.error("Cannot allocate memory due to error on concentrations")
else:
self._allocateMemoryFit(result, concentrations)
self._storeFitResult(result, concentrations)
_logger.info("Memory allocated")
else:
self._storeFitResult(result, concentrations)
self.counter += 1
def __fitOneMca(self,x,y,filename,key,info=None):
fitresult = None
result = None
concentrations = None
concentrationsInFitFile = False
# Fit MCA
fitfile = self.__getFitFile(filename,key,createdirs=False)
if os.path.exists(fitfile) and not self.overwrite:
# Load MCA data when needed
if outbuffer.saveDataDiagnostics:
if not self._attemptMcaLoad(x, y, filename, info=info):
return result, concentrations
# Load result from FIT file
try:
fitdict = ConfigDict.ConfigDict()
fitdict.read(fitfile)
concentrations = fitdict.get('concentrations', None)
concentrationsInFitFile = bool(concentrations)
result = fitdict['result']
except:
_logger.error("Error trying to use result file %s" % fitfile)
_logger.error("Please, consider deleting it.")
_logger.error(str(sys.exc_info()))
return result, concentrations
else:
# Load MCA data
if not self._attemptMcaLoad(x, y, filename, info=info):
return result, concentrations
# Fit XRF spectrum
fitresult, result, concentrations = self._fitMca(filename)
# Extract/calculate + save concentrations
if result:
# TODO: 'concentrations' in result, when does this happens and should we pop it????
concentrationsInResult = 'concentrations' not in result
else:
concentrationsInResult = False
if self._concentrations and concentrationsInResult:
result, concentrations = self._concentrationsFromResult(fitresult, result)
if self.fitConcFile and concentrations is not None and not concentrationsInFitFile:
self._updateConcFile(concentrations, filename, key)
# Digest fit result when not already digested
if self.fitFiles:
# Create/update existing FIT file
fitfile = self.__getFitFile(filename, key, createdirs=True)
if fitresult: # TODO: why not "and result is None"?
result = self.mcafit.digestresult(outfile=fitfile,
info=info)
if fitfile:
if concentrations and not concentrationsInFitFile:
self._updateFitFile(concentrations, fitfile)
self._updateFitFileList(fitfile)
else:
if fitresult and result is None:
# Use imagingDigestResult instead of digestresult:
# faster and digestresult is not needed just for imaging
result = self.mcafit.imagingDigestResult()
return result, concentrations
def _attemptMcaLoad(self, x, y, filename, info=None):
try:
#I make sure I take the fit limits configuration
self.mcafit.config['fit']['use_limit'] = 1 # TODO: why???
self.mcafit.setData(x, y, time=info.get("McaLiveTime", None))
except:
self._restoreFitConfig(filename, 'entering data')
return False
return True
def _restoreFitConfig(self, filename, task):
_logger.error("Error %s of file with output = %s\n%s" %\
(task, filename, sys.exc_info()[1]))
# Restore when a fit strategy like `matrix adjustment` is used
if self.mcafit.config['fit'].get("strategyflag", False):
config = self.__configList[self.__currentConfig]
_logger.info("Restoring fitconfiguration")
self.mcafit = ClassMcaTheory.McaTheory(config)
self.mcafit.enableOptimizedLinearFit() # TODO: why???
def _fitMca(self, filename):
result = None
concentrations = None
fitresult = None
try:
self.mcafit.estimate()
# Avoid digest=1 when possible (slow but more detailed information)
digest = self.fitFiles or\
(self._concentrations and (self.mcafit._fluoRates is None))
if self.outbuffer is not None:
# TODO: we need a full digest although only yfit and ydata
# are needed, which are thrown away by Gefit.LeastSquaresFit
digest |= self.outbuffer.saveDataDiagnostics
if digest:
fitresult, result = self.mcafit.startfit(digest=1)
elif self._concentrations:
fitresult = self.mcafit.startfit(digest=0)
try:
fitresult0 = {}
fitresult0['fitresult'] = fitresult
fitresult0['result'] = self.mcafit.imagingDigestResult()
fitresult0['result']['config'] = self.mcafit.config
conf = self.mcafit.configure()
tconf = self._tool.configure()
if 'concentrations' in conf:
tconf.update(conf['concentrations'])
else:
#what to do?
pass
concentrations = self._tool.processFitResult(config=tconf,
fitresult=fitresult0,
elementsfrommatrix=False,
fluorates = self.mcafit._fluoRates)
except:
concentrations = None
_logger.error("error in concentrations")
_logger.error(str(sys.exc_info()[0:-1]))
else:
#just images
fitresult = self.mcafit.startfit(digest=0)
except:
self._restoreFitConfig(filename, 'fitting data')
return fitresult, result, concentrations
def _concentrationsFromResult(self, fitresult, result):
if fitresult:
fitresult0 = {}
if result is None:
result = self.mcafit.digestresult()
fitresult0['result'] = result
fitresult0['fitresult'] = fitresult
conf = self.mcafit.configure()
else:
fitresult0 = {}
fitresult0['result'] = result
conf = result['config']
tconf = self._tool.configure()
if 'concentrations' in conf:
tconf.update(conf['concentrations'])
else:
pass
#_logger.error("Concentrations not calculated")
#_logger.error("Is your fit configuration file correct?")
try:
concentrations = self._tool.processFitResult(config=tconf,
fitresult=fitresult0,
elementsfrommatrix=False)
except:
_logger.error("error in concentrations")
_logger.error(str(sys.exc_info()[0:-1]))
concentrations = None
return result, concentrations
def _updateFitFile(self, concentrations, outfile):
"""Add concentrations to fit file
"""
try:
f = ConfigDict.ConfigDict()
f.read(outfile)
f['concentrations'] = concentrations
try:
os.remove(outfile)
except:
_logger.error("error deleting fit file")
f.write(outfile)
except:
_logger.error("Error writing concentrations to fit file")
_logger.error(str(sys.exc_info()))
def _updateFitFileList(self, outfile):
"""Append FIT file to list of FIT files
"""
if self.counter:
self._fitlistfile.write(',\n'+outfile)
else:
name = self._rootname +"_fitfilelist.py"
name = self.os_path_join(self.outputdir,name)
try:
os.remove(name)
except:
pass
self._fitlistfile = open(name,"w+")
self._fitlistfile.write("fitfilelist = [")
self._fitlistfile.write('\n'+outfile)
def _updateConcFile(self, concentrations, filename, key):
if not self.fitConcFile or concentrations is None:
return
concentrationsAsAscii = self._toolConversion.getConcentrationsAsAscii(concentrations)
if len(concentrationsAsAscii) > 1:
text = ""
text += "SOURCE: "+ filename +"\n"
text += "KEY: "+key+"\n"
text += concentrationsAsAscii + "\n"
f = open(self.__getFitConcFile(),"a")
f.write(text)
f.close()
def __roiOneMca(self,x,y):
return self.mcafit.roifit(x,y,width=self.roiWidth)
def _allocateMemoryFit(self, result, concentrations):
if self._concentrations:
if 'mmolar' in concentrations:
self.__conKey = "mmolar"
else:
self.__conKey = "mass fraction"
outbuffer = self.outbuffer
# Fit parameters and their uncertainties
labels = result['groups']
nFree = len(labels)
imageShape = self.__nrows, self.__ncols
paramShape = nFree, self.__nrows, self.__ncols
dtypeResult = numpy.float32
dataAttrs = {} #{'units':'counts'}
paramAttrs = {'errors': 'uncertainties', 'default': not self._concentrations}
outbuffer.allocateMemory('parameters',
shape=paramShape,
dtype=dtypeResult,
fill_value=numpy.nan,
labels=labels,
dataAttrs=dataAttrs,
groupAttrs=paramAttrs,
memtype='ram')
outbuffer.allocateMemory('uncertainties',
shape=paramShape,
dtype=dtypeResult,
fill_value=numpy.nan,
labels=labels,
dataAttrs=dataAttrs,
groupAttrs=None,
memtype='ram')
# Concentrations
if self._concentrations:
groupAttrs = {'default': True}
if 'mmolar' in concentrations:
concentration_key = 'molarconcentrations'
dataAttrs = {} #{'units': 'mM'}
else:
concentration_key = 'massfractions'
dataAttrs = {}
self._concentration_key = concentration_key
labels = concentrations['groups']
layerlist = concentrations['layerlist']
if len(layerlist) > 1:
labels += [(group, layer)
for group in concentrations['groups']
for layer in layerlist]
nConcFree = len(concentrations['groups'])
paramShape = nConcFree, self.__nrows, self.__ncols
outbuffer.allocateMemory(concentration_key,
shape=paramShape,
dtype=dtypeResult,
fill_value=numpy.nan,
labels=labels,
dataAttrs=dataAttrs,
groupAttrs=groupAttrs,
memtype='ram')
# Model ,residuals, chisq ,...
if outbuffer.diagnostics:
xdata0 = self.mcafit.xdata0.flatten().astype(numpy.int32) # channels
xdata = self.mcafit.xdata.flatten().astype(numpy.int32) # channels after limits
stackShape = self.__nrows, self.__ncols, len(xdata0)
mcaIndex = 2
iXMin, iXMax = xdata[0], xdata[-1]+1
self._mcaIdx = slice(iXMin, iXMax)
nObs = iXMax-iXMin
if outbuffer.saveFOM:
outbuffer.allocateMemory('nFreeParameters',
group='diagnostics',
shape=imageShape,
fill_value=nFree,
dtype=numpy.int32,
dataAttrs=None,
groupAttrs=None,
memtype='ram')
outbuffer.allocateMemory('nObservations',
group='diagnostics',
shape=imageShape,
fill_value=nObs,
dtype=numpy.int32,
dataAttrs=None,
groupAttrs=None,
memtype='ram')
outbuffer.allocateMemory('chisq',
group='diagnostics',
shape=imageShape,
fill_value=numpy.nan,
dtype=dtypeResult,
dataAttrs=None,
groupAttrs=None,
memtype='ram')
dataAttrs = {} #{'units':'counts'}
fitAttrs = {}
if outbuffer.saveDataDiagnostics:
# Generic axes
dataAxesNames = ['dim{}'.format(i) for i in range(len(stackShape))]
dataAxes = [(name, numpy.arange(n, dtype=dtypeResult), {})
for name, n in zip(dataAxesNames, stackShape)]
if 'config' in result:
cfg = result['config']
else:
cfg = self.mcafit.getConfiguration()
mcacfg = cfg['detector']
linear = cfg["fit"]["linearfitflag"]
if linear or (mcacfg['fixedzero'] and mcacfg['fixedgain']):
#zero = result['fittedpar'][result['parameters'].index('Zero')]
#gain = result['fittedpar'][result['parameters'].index('Gain')]
zero = mcacfg['zero']
gain = mcacfg['gain']
xenergy = zero + gain*xdata0
dataAxesNames[mcaIndex] = 'energy'
dataAxes[mcaIndex] = 'energy', xenergy.astype(dtypeResult), {'units': 'keV'}
dataAxes.append(('channels', xdata0.astype(numpy.int32), {}))
fitAttrs['axes'] = dataAxes
fitAttrs['axesused'] = dataAxesNames
if outbuffer.saveFit:
fitmodel = outbuffer.allocateMemory('model',
group='fit',
shape=stackShape,
dtype=dtypeResult,
fill_value=numpy.nan,
chunks=True,
dataAttrs=dataAttrs,
groupAttrs=fitAttrs,
memtype='hdf5')
#idx = [slice(None)]*fitmodel.ndim
#idx[mcaIndex] = slice(0, iXMin)
#fitmodel[tuple(idx)] = numpy.nan
#idx[mcaIndex] = slice(iXMax, None)
#fitmodel[tuple(idx)] = numpy.nan
if outbuffer.saveData:
outbuffer.allocateMemory('data',
group='fit',
shape=stackShape,
dtype=dtypeResult,
fill_value=numpy.nan,
chunks=True,
dataAttrs=dataAttrs,
groupAttrs=fitAttrs,
memtype='hdf5')
if outbuffer.saveResiduals:
outbuffer.allocateMemory('residuals',
group='fit',
shape=stackShape,
dtype=dtypeResult,
fill_value=numpy.nan,
chunks=True,
dataAttrs=dataAttrs,
groupAttrs=fitAttrs,
memtype='hdf5')
def _storeFitResult(self, result, concentrations):
outbuffer = self.outbuffer
# Fit parameters and their uncertainties
output = outbuffer['parameters']
outputs = outbuffer['uncertainties']
for i, group in enumerate(outbuffer.labels('parameters')):
output[i, self.__row, self.__col] = result[group]['fitarea']
outputs[i, self.__row, self.__col] = result[group]['sigmaarea']
# Concentrations
if self._concentrations:
output = outbuffer[self._concentration_key]
for i, label in enumerate(outbuffer.labels(self._concentration_key)):
if isinstance(label, tuple):
group, layer = label
output[i, self.__row, self.__col] = concentrations[layer][self.__conKey][group]
else:
output[i, self.__row, self.__col] = concentrations[self.__conKey][label]
# Diagnostics: model, residuals, chisq ,...
if outbuffer.diagnostics:
if outbuffer.saveFOM:
outbuffer['chisq'][self.__row, self.__col] = result['chisq']
idx = self.__row, self.__col, self._mcaIdx
idxall = self.__row, self.__col, slice(None)
if outbuffer.saveFit:
output = outbuffer['model']
output[idx] = result['yfit']
if outbuffer.saveData:
output = outbuffer['data']
output[idxall] = result['ydata0']
if outbuffer.saveResiduals:
output = outbuffer['residuals']
output[idx] = result['yfit'] - result['ydata']
def _allocateMemoryRoiFit(self, result):
outbuffer = self.outbuffer
# Fit parameters (ROIs)
labels = [(group, roi.replace(' ROI', ''))
for group, rois in result.items()
for roi in rois]
nFree = len(labels)
paramShape = nFree, self.__nrows, self.__ncols
dtypeResult = numpy.float32
dataAttrs = {} #{'units':'counts'}
groupAttrs = {'default': True}
outbuffer.allocateMemory('roi',
shape=paramShape,
dtype=dtypeResult,
labels=labels,
dataAttrs=dataAttrs,
groupAttrs=groupAttrs,
memtype='ram')
def _storeRoiFitResult(self, result):
outbuffer = self.outbuffer
output = outbuffer['roi']
for i, label in enumerate(outbuffer.labels('roi')):
group, roi = label
output[i, self.__row, self.__col] = result[group][roi+' ROI']
def main():
import getopt
options = 'f'
longoptions = ['cfg=', 'pkm=', 'outdir=', 'roifit=', 'roi=',
'roiwidth=', 'concentrations=', 'overwrite=',
'outroot=', 'outentry=', 'outprocess=',
'edf=', 'h5=', 'csv=', 'tif=', 'dat=',
'diagnostics=', 'debug=', 'multipage=']
filelist = None
cfg = None
roifit = 0
roiwidth = 250.
tif = 0
edf = 1
csv = 0
h5 = 1
dat = 0
multipage = 0
debug = 0
outputDir = None
concentrations = 0
diagnostics = 0
overwrite = 1
outputRoot = ""
fileEntry = ""
fileProcess = ""
opts, args = getopt.getopt(
sys.argv[1:],
options,
longoptions)
for opt,arg in opts:
if opt in ('--pkm','--cfg'):
cfg = arg
elif opt in ('--outdir'):
outputDir = arg
elif opt in ('--roi','--roifit'):
roifit = int(arg)
elif opt in ('--roiwidth'):
roiwidth = float(arg)
elif opt in ('--tif', '--tiff'):
tif = int(arg)
elif opt == '--edf':
edf = int(arg)
elif opt == '--csv':
csv = int(arg)
elif opt == '--dat':
dat = int(arg)
elif opt == '--h5':
h5 = int(arg)
elif opt == '--overwrite':
overwrite = int(arg)
elif opt == '--concentrations':
concentrations = int(arg)
elif opt == '--outroot':
outputRoot = arg
elif opt == '--outentry':
fileEntry = arg
elif opt == '--outprocess':
fileProcess = arg
elif opt == '--debug':
debug = int(arg)
elif opt == '--diagnostics':
diagnostics = int(arg)
elif opt == '--edf':
edf = int(arg)
elif opt == '--csv':
csv = int(arg)
elif opt == '--h5':
h5 = int(arg)
elif opt == '--dat':
dat = int(arg)
elif opt == '--multipage':
multipage = int(arg)
logging.basicConfig()
if debug:
_logger.setLevel(logging.DEBUG)
else:
_logger.setLevel(logging.INFO)
filelist=args
if len(filelist) == 0:
_logger.error("No input files, run GUI")
sys.exit(0)
t0 = time.time()
outbuffer = OutputBuffer(outputDir=outputDir,
outputRoot=outputRoot,
fileEntry=fileEntry,
fileProcess=fileProcess,
diagnostics=diagnostics,
tif=tif, edf=edf, csv=csv,
h5=h5, dat=dat,
multipage=multipage,
overwrite=overwrite)
from PyMca5.PyMcaMisc import ProfilingUtils
with ProfilingUtils.profile(memory=debug, time=debug):
b = McaAdvancedFitBatch(cfg,filelist=filelist,
fitfiles=False,
outputdir=outputDir,
roifit=roifit,
roiwidth=roiwidth,
concentrations=concentrations,
outbuffer=outbuffer,
overwrite=overwrite)
b.processList()
print("Total Elapsed = % s " % (time.time() - t0))
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
main()
|