File: PyMcaBatchTest.py

package info (click to toggle)
pymca 5.6.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 46,584 kB
  • sloc: python: 164,135; ansic: 20,050; sh: 175; makefile: 142; xml: 55
file content (696 lines) | stat: -rw-r--r-- 28,369 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2019 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "Wout De Nolf"
__contact__ = "wout.de_nolf@esrf.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import unittest
import sys
import os
import numpy
from random import randint
import tempfile
import shutil
from glob import glob
import logging
from PyMca5.tests import XrfData
import PyMca5.PyMcaGui.PyMcaQt as qt
from PyMca5.PyMcaGui.misc.testutils import TestCaseQt
try:
    import h5py
    HAS_H5PY = True
except ImportError:
    HAS_H5PY = False


_logger = logging.getLogger(__name__)


class testPyMcaBatch(TestCaseQt):

    _rtolLegacy = 1e-5

    def setUp(self):
        self.path = tempfile.mkdtemp(prefix='pymca')
        super(testPyMcaBatch, self).setUp()

    def tearDown(self):
        shutil.rmtree(self.path)
        from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview
        PyMcaPrintPreview.resetSingletonPrintPreview()        
        super(testPyMcaBatch, self).tearDown()

    def testCommand(self):
        from PyMca5.PyMcaGui.pymca import PyMcaBatch
        cmd = PyMcaBatch.Command('command')
        cmd.addOption('a', value=1, format='"{:04d}"')
        cmd.b = 2
        parts = {'command', '--a="0001"', '--b=2'}
        self.assertEqual(parts, set(str(cmd).split(' ')))
        cmd.a = 10
        parts = {'command', '--a="0010"', '--b=2'}
        self.assertEqual(parts, set(str(cmd).split(' ')))
        cmd['a'] = 5
        cmd['c'] = 'test'
        parts = {'command', '--a=5', '--b=2', '--c=test'}
        self.assertEqual(parts, set(str(cmd).split(' ')))
        dict1 = cmd.getAllOptions()
        dict2 = {'a': 5, 'b': 2, 'c': 'test'}
        self.assertEqual(dict1, dict2)
        dict1 = cmd.getAllOptionsBut('a', 'b')
        dict2 = {'c': 'test'}
        self.assertEqual(dict1, dict2)
        dict1 = cmd.getOptions('a', 'b')
        dict2 = {'a': 5, 'b': 2}
        self.assertEqual(dict1, dict2)

    def testSubCommands(self):
        """
        Check multi processing slicing of 2D maps for different
        map dimensions, number of files and number of processes.
        Assumes a file contains one or more rows (i.e. columns are
        never split over files).
        """
        for i in range(10000):
            nRows = randint(1, 10)
            nColumns = randint(1, 10)
            nRowsPerFile = randint(1, 5)
            if (nRows % nRowsPerFile) == 0:
                nFiles = nRows//nRowsPerFile
            else:
                nFiles = nRows
            nBatches = randint(1, 30)
            chunks = (i % 2) == 0
            self.assertSubCommands(nRows, nColumns, nFiles, nBatches, chunks)

    def assertSubCommands(self, nRows, nColumns, nFiles, nBatches, bchunks):
        """
        Checks whether each spectrum is processed exactly once and chunk
        indices are sequential.
        """
        from PyMca5.PyMcaGui.pymca import PyMcaBatch
        msg = '\nnRows={}, nColumns={}, nFiles={}, nBatches={}'\
              .format(nRows, nColumns, nFiles, nBatches)
        coverage = numpy.zeros((nRows, nColumns), dtype=int)
        nRowsPerFile = nRows//nFiles
        chunks = []

        def runProcess(cmd):
            iFiles = list(range(cmd.filebeginoffset, nFiles-cmd.fileendoffset, cmd.filestep))
            iCols = list(range(cmd.mcaoffset, nColumns, cmd.mcastep))
            iRows = list(range(nRowsPerFile))
            for ifile in iFiles:
                for irow in iRows:
                    for icol in iCols:
                        coverage[ifile*nRowsPerFile+irow, icol] += 1
            self.assertTrue(bool(iFiles), msg + '\n no files processed')
            if bool(iCols):
                chunks.append(cmd.chunk)

        cmd = PyMcaBatch.Command()
        PyMcaBatch.subCommands(cmd, nFiles, nBatches, runProcess, chunks=bchunks)

        # Check: each spectrum is processed exactly once
        self.assertTrue((coverage == 1).all(), msg + '\n {}'.format(coverage))

        # Check: chunk indices sequential
        self.assertTrue((numpy.diff(sorted(chunks)) == 1).all(), msg)
        self.assertTrue(len(chunks) <= nBatches, msg)

    def testFastFitEdfMap(self):
        self._assertFastFitMap('edf')

    def testSlowFitEdfMap(self):
        self._assertSlowFitMap('edf')

    def testSlowRoiFitEdfMap(self):
        self._assertSlowFitMap('edf', roiwidth=100, outputdir='fitresulta')
        self._assertSlowGuiFitMap('edf', roiwidth=100, outputdir='fitresultb')

    @unittest.skipIf(numpy.version.version == '1.17.0', "skipped numpy issue 13715")
    def testSlowMultiFitEdfMap(self):
        self._assertSlowMultiFitMap('edf')

    def testFastFitSpecMap(self):
        self._assertFastFitMap('specmesh')

    def testSlowFitSpecMap(self):
        self._assertSlowFitMap('specmesh')

    def testSlowRoiFitSpecMap(self):
        self._assertSlowFitMap('specmesh', roiwidth=100, outputdir='fitresulta')
        self._assertSlowGuiFitMap('specmesh', roiwidth=100, outputdir='fitresultb')

    @unittest.skipIf(numpy.version.version == '1.17.0', "skipped numpy issue 13715")
    def testSlowMultiFitSpecMap(self):
        self._assertSlowMultiFitMap('specmesh')

    @unittest.skipIf(not HAS_H5PY, "skipped h5py missing")
    def testFastFitHdf5Map(self):
        self._assertFastFitMap('hdf5')

    @unittest.skipIf(not HAS_H5PY, "skipped h5py missing")
    def testSlowFitHdf5Map(self):
        self._assertSlowFitMap('hdf5')

    @unittest.skipIf(not HAS_H5PY, "skipped h5py missing")
    def testSlowRoiFitHdf5Map(self):
        self._assertSlowFitMap('hdf5', roiwidth=100, outputdir='fitresulta')
        self._assertSlowGuiFitMap('hdf5', roiwidth=100, outputdir='fitresultb')

    @unittest.skipIf(not HAS_H5PY, "skipped h5py missing")
    def testSlowMultiFitHdf5Map(self):
        self._assertSlowMultiFitMap('hdf5')

    def _assertFastFitMap(self, typ, outputdir='fitresults'):
        info = self._generateData(fast=True, typ=typ)
        # Compare with legacy FastXRFLinearFit
        result1 = self._fitMap(info, fast=True, outputdir=outputdir+'1')
        result2 = self._fitMap(info, fast=True, legacy=True, outputdir=outputdir+'2')
        self._assertEqualFitResults(result1, result2, rtol=self._rtolLegacy)

    def _assertSlowFitMap(self, typ, outputdir='fitresults', **kwargs):
        info = self._generateData(typ=typ)
        # Compare with legacy McaAdvancedFitBatch
        result1 = self._fitMap(info, outputdir=outputdir+'1', **kwargs)
        result2 = self._fitMap(info, legacy=True, outputdir=outputdir+'2', **kwargs)
        self._assertEqualFitResults(result1, result2, rtol=self._rtolLegacy)

    def _assertSlowMultiFitMap(self, typ, outputdir='fitresults', **kwargs):
        from PyMca5.PyMcaGui.pymca.PyMcaBatch import ranAsBootstrap
        info = self._generateData(typ=typ)
        # Compare single vs. multi processing
        result1 = self._fitMap(info, nBatches=2, outputdir=outputdir+'1', **kwargs)
        result2 = self._fitMap(info, nBatches=1, outputdir=outputdir+'2', **kwargs)
        self._assertEqualFitResults(result1, result2, rtol=0)
        if not ranAsBootstrap() and typ != 'hdf5':
            # REMARK: not supported by legacy code
            #  - testing from source
            #  - hdf5 selection without user interaction
            #  - multi process on single non-hdf5 file
            # Compare legacy single vs. multi processing
            if typ != 'specmesh':
                result3 = self._fitMap(info, nBatches=2, legacy=True,
                                       outputdir=outputdir+'3', **kwargs)
            result4 = self._fitMap(info, nBatches=1, legacy=True,
                                   outputdir=outputdir+'4', **kwargs)
            if typ != 'specmesh':
                self._assertEqualFitResults(result3, result4, rtol=0)
            # Compare with legacy PyMcaBatch
            if typ != 'specmesh':
                self._assertEqualFitResults(result1, result3, rtol=self._rtolLegacy)
            self._assertEqualFitResults(result2, result4, rtol=self._rtolLegacy)
        # Compare thread vs. process
        result5 = self._fitMap(info, nBatches=0,
                               outputdir=outputdir+'5', **kwargs)
        self._assertEqualFitResults(result2, result5, rtol=0)
        # Compare blocking vs. non-blocking process
        result6 = self._fitMap(info, nBatches=1, blocking=True,
                               outputdir=outputdir+'6', **kwargs)
        self._assertEqualFitResults(result2, result6, rtol=0)

    def _assertSlowGuiFitMap(self, typ, outputdir='fitresults', **kwargs):
        from PyMca5.PyMcaGui.pymca.PyMcaBatch import ranAsBootstrap
        info = self._generateData(typ=typ)
        result1 = self._fitMap(info, nBatches=1, outputdir=outputdir+'1', **kwargs)
        if not ranAsBootstrap() and typ != 'hdf5':
            # Compare with legacy PyMcaBatch
            result2 = self._fitMap(info, nBatches=1, legacy=True,
                                   outputdir=outputdir+'2', **kwargs)
            self._assertEqualFitResults(result1, result2, rtol=self._rtolLegacy)

    def _fitMap(self, info, fast=False, nBatches=-1,
                outputdir='fitresults', **kwargs):
        outputdir = os.path.join(self.path, outputdir)
        if fast:
            # Single process fast fitting (FastXRFLinearFit)
            result = self._fastFitMap(info, outputdir, **kwargs)
        elif nBatches < 0:
            # Single process slow fitting (McaAdvancedFitBatch)
            result = self._slowFitMap(info, outputdir, **kwargs)
        else:
            # Multi process slow fitting (PyMcaBatch)
            result = self._slowMultiFitMap(info, outputdir,
                                           nBatches, **kwargs)
        # Validate result
        labels, scanData = self._readResult(result)
        self._checkFitResult(labels, scanData, info['liveTimeCorrection'],
                             multiprocessing=nBatches > 1, fast=fast)
        return labels, scanData

    def _fastFitMap(self, info, outputdir, legacy=False):
        """
        Multi process fast fitting
        """
        if legacy:
            from PyMca5.PyMcaPhysics.xrf import LegacyFastXRFLinearFit as FastXRFLinearFit
        else:
            from PyMca5.PyMcaPhysics.xrf import FastXRFLinearFit
        batch = FastXRFLinearFit.FastXRFLinearFit()
        kwargs = {'y': info['input'],
                  'livetime': info['liveTime'],
                  'weight': 0,
                  'configuration': info['configuration'],
                  'concentrations': True,
                  'refit': 1}
        if not legacy:
            kwargs['outputDir'] = outputdir
            kwargs['dat'] = True
            kwargs['edf'] = False
            kwargs['h5'] = False
            kwargs['diagnostics'] = True
        outbuffer = batch.fitMultipleSpectra(**kwargs)
        if legacy:
            FastXRFLinearFit.save(outbuffer, outputdir, csv=False)
        return self._fitResultFileName(None, outputdir, fast=True, legacy=legacy)

    def _slowFitMap(self, info, outputdir, legacy=False, roiwidth=0):
        """
        Single process slow fitting
        """
        if legacy:
            from PyMca5.PyMcaPhysics.xrf import LegacyMcaAdvancedFitBatch as McaAdvancedFitBatch
            os.mkdir(outputdir)
        else:
            from PyMca5.PyMcaPhysics.xrf import McaAdvancedFitBatch
        kwargs = {'filelist': info['input'],
                  'outputdir': outputdir,
                  'concentrations': True,
                  'selection': info['selection'],
                  'quiet': True,
                  'roifit': bool(roiwidth),
                  'roiwidth': roiwidth}
        if not legacy:
            kwargs['dat'] = True
            kwargs['edf'] = False
            kwargs['h5'] = False
            kwargs['diagnostics'] = True
        batch = McaAdvancedFitBatch.McaAdvancedFitBatch(info['cfgname'], **kwargs)
        batch.processList()
        return self._fitResultFileName(info['input'], outputdir,
                                       legacy=legacy, roiwidth=roiwidth)

    def _slowMultiFitMap(self, info, outputdir, nBatches, legacy=False,
                         roiwidth=0, **startargs):
        """
        Multi process slow fitting

        nBatches == 0: thread
        nBatches == 1, blocking == False: single monitored process
        nBatches == 1, blocking == True: single unmonitored process
        nBatches > 1: multi processing
        """
        os.mkdir(outputdir)
        kwargs = {'actions': True,
                  'showresult': False,
                  'filelist': info['input'],
                  'config': info['cfgname'],
                  'outputdir': outputdir}
        if legacy:
            from PyMca5.PyMcaGui.pymca.LegacyPyMcaBatch import McaBatchGUI
        else:
            from PyMca5.PyMcaGui.pymca.PyMcaBatch import McaBatchGUI
            kwargs['dat'] = True
            kwargs['edf'] = False
            kwargs['h5'] = False
            kwargs['diagnostics'] = True
            kwargs['concentrations'] = True
            kwargs['roifit'] = bool(roiwidth)
            kwargs['roiwidth'] = roiwidth
            kwargs['nproc'] = nBatches
            kwargs['selection'] = info['selection']
        result = self._fitResultFileName(info['input'], outputdir,
                                         legacy=legacy, roiwidth=roiwidth)

        widget = McaBatchGUI(**kwargs)
        if legacy:
            widget._McaBatchGUI__concentrationsBox.setChecked(True)
            widget._McaBatchGUI__roiBox.setChecked(bool(roiwidth))
            widget._McaBatchGUI__roiSpin.setValue(roiwidth)
            widget._McaBatchGUI__splitSpin.setValue(min(nBatches, 1))
            widget._McaBatchGUI__splitBox.setChecked(nBatches > 1)

        #widget.show()  # show widget for debugging
        self.qapp.processEvents()
        widget.start(**startargs)
        self._waitForFitResult(result)
        widget.close()
        self.qapp.processEvents()
        #self.qapp.exec_()  # block for debugging
        return result

    def _fitResultFileName(self, filelist, outputdir, fast=False,
                           legacy=False, roiwidth=0):
        ext = '.dat'
        if filelist:
            # Slow fit
            from PyMca5.PyMcaPhysics.xrf import McaAdvancedFitBatch
            rootname = McaAdvancedFitBatch.getRootName(filelist)
            if legacy:
                subdir = 'IMAGES'
            else:
                #subdir = rootname
                subdir = 'IMAGES'
        else:
            # Fast fit
            rootname = 'images'
            subdir = 'IMAGES'
        if roiwidth:
            if legacy:
                rootname += '_*'
                ext = '.edf'
            rootname += '_{:04d}eVROI'.format(roiwidth)
        return os.path.join(outputdir, subdir, rootname+ext)

    def _generateData(self, fast=False, typ='hdf5'):
        # Generate data (in memory + save in requested format)
        nDet = 1  # TODO: currently only works with 1 detector
        nRows = 5
        nColumns = 4
        nTimes = 3
        filename = os.path.join(self.path, 'Map')
        if typ == 'edf':
            genFunc = XrfData.generateEdfMap
            filename += '.edf'
        elif typ == 'specmesh':
            genFunc = XrfData.generateSpecMesh
            filename += '.dat'
        elif typ == 'hdf5':
            genFunc = XrfData.generateHdf5Map
            filename += '.h5'
        else:
            raise ValueError('Unknown data type {} for XRF map'.format(repr(typ)))
        # TODO: cannot provide live time when fitting .edf list of files
        liveTimeIsProvided = fast or typ == 'hdf5'

        def modfunc(configuration):
            configuration["concentrations"]["usematrix"] = 0
            configuration["concentrations"]["useautotime"] = int(liveTimeIsProvided)
            if fast:
                configuration['fit']['stripalgorithm'] = 1
            else:
                configuration['fit']['linearfitflag'] = 1
        info = genFunc(filename, nDet=nDet, nRows=nRows,
                       nColumns=nColumns, nTimes=nTimes,
                       modfunc=modfunc)

        # Concentrations are multiplied by this factor to
        # normalize live time to preset time
        # TODO: currently only works with 1 detector
        info['liveTime'] = info['liveTime'][0, ...]
        if liveTimeIsProvided:
            info['liveTimeCorrection'] = float(info['presetTime'])/info['liveTime']
        else:
            info['liveTimeCorrection'] = numpy.ones_like(info['liveTime'])
        if typ == 'specmesh':
            # REMARK: spec file data is flattened by the spec loaders
            nRows, nColumns = info['liveTimeCorrection'].shape
            info['liveTimeCorrection'] = info['liveTimeCorrection'].reshape((1, nRows*nColumns))

        # Batch fit input (list of strings or stack object)
        filelist = info['filelist']
        if typ == 'edf':
            if fast:
                from PyMca5.PyMca import EDFStack
                info['input'] = EDFStack.EDFStack(filelist, dtype=numpy.float32)
            else:
                info['input'] = filelist
                info['selection'] = None
        elif typ == 'specmesh':
            if fast:
                from PyMca5.PyMcaIO import SpecFileStack
                info['input'] = SpecFileStack.SpecFileStack(filelist)
            else:
                info['input'] = filelist
                info['selection'] = None
        elif typ == 'hdf5':
            datasets = ['/xrf/mca{:02d}/data'.format(k) for k in range(nDet)]
            if fast:
                from PyMca5.PyMcaIO import HDF5Stack1D
                info['selection'] = selection = {'y': datasets[0]}
                info['input'] = HDF5Stack1D.HDF5Stack1D(filelist, selection)
            else:
                info['selection'] = {'x': [], 'm': [], 'y': [datasets[0]]}
                info['input'] = filelist

        # Batch fit configuration
        info['cfgname'] = os.path.join(self.path, 'Map.cfg')
        return info

    def _assertEqualFitResults(self, result1, result2, rtol=0, atol=0):
        labels1, scanData1 = result1
        labels2, scanData2 = result2
        self.assertEqual(set(labels1), set(labels2))
        for label, data in zip(labels1, scanData1):
            idx = labels2.index(label)
            numpy.testing.assert_allclose(data, scanData2[idx, :],
                                          err_msg=label, rtol=rtol,
                                          atol=atol)

    def _convertLegacyLabel(self, label):
        if label.endswith('-mass-fraction'):
            label = label.replace('-mass-fraction', '')
            label = 'w({})'.format(label)
        label = label.replace('C(', 'w(')
        label = label.replace('-', '_')
        label = label.replace(' ', '_')
        if label.endswith('_ROI'):
            label = label[:-4]
        return label

    def _convertLegacyLabels(self, labels, data):
        labels = list(map(self._convertLegacyLabel, labels))
        excluded_labels = 'row', 'column', 'point'
        included = [label.lower() not in excluded_labels for label in labels]
        if not all(included):
            # woraround numpy issue https://github.com/numpy/numpy/pull/13715
            # by creating an intermediate array
            # data = data[included, ...]
            data = data[numpy.array(included, copy=True), ...]
            labels = [label for label, b in zip(labels, included) if b]
        return labels, data

    def _readResult(self, filenames):
        """
        :param str or list filenames:
        :returns tuple: list(nparams), ndarray(nparams, nrows, ncolumns)
        """
        if isinstance(filenames, list):
            filename0 = filenames[0]
        elif '*' in filenames:
            filenames = glob(filenames)
            filename0 = filenames[0]
        else:
            filename0 = filenames
            filenames = [filenames]
        ext = os.path.splitext(filename0)[1]
        if ext == '.dat':
            labels, data = self._parseDatResults(filenames[0])
        elif ext == '.edf':
            labels, data = self._parseEdfResults(filenames)
        else:
            raise NotImplementedError
        return self._convertLegacyLabels(labels, data)

    def _parseDatResults(self, filename):
        """
        :param str filename:
        :returns tuple: list(nparams), ndarray(nparams, nrows, ncolumns)
        """
        from PyMca5.PyMcaIO import specfilewrapper as specfile
        self.assertTrue(os.path.isfile(filename),
                        "Batch fit result file <%s> not present" % filename)
        sf = specfile.Specfile(filename)
        labels = sf[0].alllabels()
        scanData = sf[0].data()
        sf = None
        nParams, nPoints = scanData.shape
        idxRow = labels.index('row')
        idxColumn = labels.index('column')
        nRows = int(numpy.round(max(scanData[idxRow, :]))) + 1
        nColumns = int(numpy.round(max(scanData[idxColumn, :]))) + 1
        colfast = scanData[idxRow, 0] == scanData[idxRow, 1]
        if colfast:
            order = 'C'
        else:
            order = 'F'
        scanData = scanData.reshape((nParams, nRows, nColumns), order=order)
        return labels, scanData

    def _parseEdfResults(self, filenames):
        """
        :param list filenames:
        :returns tuple: list(nparams), ndarray(nparams, nrows, ncolumns)
        """
        labels = []
        data = []
        from PyMca5.PyMcaIO import EdfFile
        for filename in filenames:
            # REMARK: each file can contain multiple images (roifit)
            #stack = EDFStack.EDFStack(filename)
            stack = EdfFile.EdfFile(filename)
            for i in range(stack.GetNumImages()):
                data.append(stack.GetData(i))
                labels.append(stack.GetHeader(i)['Title'])
        return labels, numpy.asarray(data)

    def _waitForFitResult(self, filenames):
        """
        :param list filenames:
        """
        # Wait until result is created
        from time import sleep
        msg = 'Waiting for {} ...'.format(filenames)
        while not self._resultExists(filenames):
            sleep(3)
            if msg:
                _logger.info(msg)
                msg = ''
            self.qapp.processEvents()

        # Wait until result is finished writting
        bytes0 = self._resultSize(filenames)
        nfiles0 = self._resultNFiles(filenames)
        while True:
            sleep(1)
            bytes1 = self._resultSize(filenames)
            nfiles1 = self._resultNFiles(filenames)
            if bytes1 == bytes0 and nfiles0 == nfiles1:
                break
            else:
                bytes0 = bytes1
                nfiles0 = nfiles1
        _logger.info('Finished {}'.format(filenames))

    def _resultExists(self, filenames):
        if isinstance(filenames, list):
            if filenames:
                return all(map(self._resultExists, filenames))
            else:
                return False
        elif '*' in filenames:
            return self._resultExists(glob(filenames))
        elif filenames:
            return os.path.exists(filenames)
        else:
            return False

    def _resultSize(self, filenames):
        if isinstance(filenames, list):
            if filenames:
                return sum(map(self._resultExists, filenames))
            else:
                return 0
        elif '*' in filenames:
            return self._resultExists(glob(filenames))
        elif filenames:
            return os.stat(filenames).st_size
        else:
            return 0

    def _resultNFiles(self, filenames):
        if isinstance(filenames, list):
            if filenames:
                return sum(map(self._resultExists, filenames))
            else:
                return 0
        elif '*' in filenames:
            return self._resultExists(glob(filenames))
        elif filenames:
            return int(os.path.exists(filenames))
        else:
            return 0

    def _checkFitResult(self, labels, paramStack, liveTimeCorrection,
                        multiprocessing=False, fast=False):
        """
        Validate fit result

        :param list labels: parameter names
        :param ndarray paramStack: nParams x nRows x nColumns
        :param ndarray liveTimeCorrection: nRows x nColumns
        :param bool multiprocessing: merged result of multiple processes
        :param bool fast: result of fast processing
        """
        nParams, nRows, nColumns = paramStack.shape
        self.assertTrue((nRows, nColumns), liveTimeCorrection.shape)
        for label, param in zip(labels, paramStack):
            if label in ["Point", "row", "column"]:
                continue
            if label.startswith("w("):
                # Same spectrum in each pixel but live time changes.
                # This means peak areas are the same but concentrations
                # are corrected for this live time.
                param = param/liveTimeCorrection
                # TODO: why rounding errors?
                rtol = 1e-5
            else:
                # Same spectrum in each pixel so fitted parameters
                # should have the same value in each pixel
                rtol = 0
            numpy.testing.assert_allclose(param, param[0, 0], err_msg=label,
                                          rtol=rtol, atol=0)


def getSuite(auto=True):
    testSuite = unittest.TestSuite()
    if auto:
        testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase(testPyMcaBatch))
    else:
        # use a predefined order
        testSuite.addTest(testPyMcaBatch("testCommand"))
        testSuite.addTest(testPyMcaBatch("testSubCommands"))
        testSuite.addTest(testPyMcaBatch("testFastFitEdfMap"))
        testSuite.addTest(testPyMcaBatch("testSlowFitEdfMap"))
        testSuite.addTest(testPyMcaBatch("testSlowRoiFitEdfMap"))
        testSuite.addTest(testPyMcaBatch("testSlowMultiFitEdfMap"))
        testSuite.addTest(testPyMcaBatch("testFastFitHdf5Map"))
        testSuite.addTest(testPyMcaBatch("testSlowFitHdf5Map"))
        testSuite.addTest(testPyMcaBatch("testSlowRoiFitHdf5Map"))
        testSuite.addTest(testPyMcaBatch("testSlowMultiFitHdf5Map"))
        testSuite.addTest(testPyMcaBatch("testFastFitSpecMap"))
        testSuite.addTest(testPyMcaBatch("testSlowFitSpecMap"))
        testSuite.addTest(testPyMcaBatch("testSlowRoiFitSpecMap"))
        testSuite.addTest(testPyMcaBatch("testSlowMultiFitSpecMap"))
    return testSuite


def test(auto=False):
    return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto))


if __name__ == '__main__':
    if len(sys.argv) > 1:
        auto = False
    else:
        auto = True
    app = qt.QApplication([])
    result = test(auto)
    app = None
    sys.exit(not result.wasSuccessful())