1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2015 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__= "Generate specfile from all EPL97 cross sections in keV and barn"
import os
import sys
import EADLSubshells
import EPDL97Parser as EPDLParser
Elements = EPDLParser.Elements
AVOGADRO_NUMBER = EPDLParser.AVOGADRO_NUMBER
import numpy
log = numpy.log
exp = numpy.exp
getTotalCoherentCrossSection = EPDLParser.getTotalCoherentCrossSection
getTotalIncoherentCrossSection = EPDLParser.getTotalIncoherentCrossSection
getTotalPhotoelectricCrossSection = EPDLParser.getTotalPhotoelectricCrossSection
getPartialPhotoelectricCrossSection = EPDLParser.getPartialPhotoelectricCrossSection
getTotalPairCrossSection = EPDLParser.getTotalPairCrossSection
getTotalTripletCrossSection = EPDLParser.getTotalTripletCrossSection
def getHeader(filename):
text = '#F %s\n' % filename
text += '#U00 This file is a direct conversion to specfile format of \n'
text += '#U01 the original EPDL97 photoelectric cross sections contained\n'
text += '#U02 in the EPDL97.DAT file from the library.\n'
text += '#U03 EPDL97 itself can be found at:\n'
text += '#U04 http://www-nds.iaea.org/epdl97/libsall.htm\n'
text += '#U05\n'
text += '#U06 The command used to generate this file has been:\n'
if len(sys.argv) > 3:
text += '#U07 %s %s %s %s\n' % (os.path.basename(__file__),\
sys.argv[1], sys.argv[2], sys.argv[3])
else:
text += '#U07 %s %s %s\n' % (os.path.basename(__file__),\
sys.argv[1], sys.argv[2])
text += '\n'
return text
if __name__ == "__main__":
if len(sys.argv) < 3:
print("Usage:")
print("python EPDL97GenerateCrossSections SPEC_output_filename barns_flag [short_output_flag]")
sys.exit(0)
SHORT_OUTPUT_FLAG = 0
if len(sys.argv) > 3:
SHORT_OUTPUT_FLAG = int(sys.argv[3])
fname = sys.argv[1]
if os.path.exists(fname):
os.remove(fname)
if int(sys.argv[2]):
BARNS = True
else:
BARNS = False
print("BARNS = %s" % BARNS)
outfile = open(fname, 'wb')
outfile.write(getHeader(fname))
shells = EADLSubshells.SHELL_LIST
bad_shells = ['L (', 'L23',
'M (', 'M23', 'M45',
'N (', 'N23', 'N45', 'N67',
'O (', 'O23', 'O45', 'O67', 'O89',
'P (', 'P23', 'P45', 'P67', 'P89', 'P101',
'Q (', 'Q23', 'Q45', 'Q67']
LONG_LABELS = True
#find the first element for which EPDL has N1 or P1 shell attenuation data
if SHORT_OUTPUT_FLAG:
testShell = "N1"
else:
testShell = "P1"
z = 0
i = 0
while z == 0:
i += 1
try:
dummy = getPartialPhotoelectricCrossSection(i, testShell, getmode=True)
z = i
except IOError:
pass
firstNonZeroPhotoelectric = z
for i in range(1, 101):
print("i = %d element = %s" % (i, Elements[i-1]))
#coherent
energy_cohe, value_cohe, mode_cohe = getTotalCoherentCrossSection(i,
getmode=True)
#incoherent
energy_incohe, value_incohe, mode_incohe = getTotalIncoherentCrossSection(i,
getmode=True)
#photoelectric
energy_photo, value_photo, mode_photo = getTotalPhotoelectricCrossSection(i,
getmode=True)
#check to see the energies:
#for j in range(10):
# print energy_cohe[j], energy_incohe[j], energy_photo[j]
#to select an appropriate energy grid as close as possible to the original
#while keeping in mind the PyMca goals, I use the coherent energy grid till
#the non-zero first value of the photoelectric cross section. At that point,
#I use the photoelectric energy grid.
energy = numpy.concatenate((energy_cohe[energy_cohe<energy_photo[0]],
energy_photo))
#now perform a log-log interpolation when needed
#lin-lin interpolation:
#
# y0 (x1-x) + y1 (x-x0)
# y = -------------------------
# x1 - x0
#
#log-log interpolation:
#
# log(y0) * log(x1/x) + log(y1) * log(x/x0)
# log(y) = ------------------------------------------
# log (x1/x0)
#
cohe = numpy.zeros(len(energy), numpy.float64)
incohe = numpy.zeros(len(energy), numpy.float64)
photo = numpy.zeros(len(energy), numpy.float64)
total = numpy.zeros(len(energy), numpy.float64)
#get the partial photoelectric cross sections
photo_dict = {}
photo_label_list = []
photo_long_label_list = []
END = False
for shell in EADLSubshells.SHELL_LIST:
if shell[0:3] in bad_shells:
continue
if shell[0:4] in bad_shells:
continue
# do not generate partial photoelectric cross sections for these shells
if SHORT_OUTPUT_FLAG:
if shell[0] in ['N', 'O', 'P', 'Q']:
continue
else:
if shell[0] in ['P', 'Q']:
continue
photo_long_label_list.append(shell)
actual_shell = shell.replace(' ','').split("(")[0]
photo_label_list.append(actual_shell)
photo_dict[actual_shell] = {}
ene = energy * 1
v = photo * 0.0
value = photo * 0.0
if not END:
try:
ene, v, mode = getPartialPhotoelectricCrossSection(i, actual_shell,
getmode=True)
#log-log interpolate in the final energy grid
value = photo * 0.0
for n in range(len(energy)):
x = energy[n]
if (x == ene[0]) and (energy[n+1] == x):
#avoid entering twice the absorption edges
continue
if x == ene[0]:
value[n]=v[0]
continue
if x < ene[0]:
continue
j1 = 0
while ene[j1] < x:
j1 += 1
j0 = j1 - 1
x0 = ene[j0]
x1 = ene[j1]
y0 = v[j0]
y1 = v[j1]
value[n] = exp((log(y0) * log(x1/x) + log(y1) * log(x/x0))/log(x1/x0))
except IOError:
END = True
#print sys.exc_info()
ene = energy * 1
v = photo * 0.0
photo_dict[actual_shell]['read_energy'] = ene
photo_dict[actual_shell]['read_value'] = v
photo_dict[actual_shell]['value'] = value
#coherent needs to interpolate
indices = numpy.nonzero(energy_cohe<energy_photo[0])
cohe[indices] = value_cohe[indices]
for n in range(len(indices),len(energy)):
x = energy[n]
j1 = len(indices)
if energy_cohe[j1] == x:
cohe[n] = value_cohe[j1]
continue
while energy_cohe[j1] < x:
j1 += 1
j0 = j1 - 1
if j0 < 0:
print(x, energy_cohe[0])
raise ValueError("coherent")
x0 = energy_cohe[j0]
x1 = energy_cohe[j1]
y0 = value_cohe[j0]
y1 = value_cohe[j1]
cohe[n] = exp((log(y0) * log(x1/x) + log(y1) * log(x/x0))/log(x1/x0))
#compton needs to interpolate everything
for n in range(len(energy)):
x = energy[n]
j1 = 0
if energy_incohe[j1] == x:
incohe[n] = value_incohe[j1]
continue
while energy_incohe[j1] < x:
j1 += 1
j0 = j1 - 1
if j0 < 0:
print(x, energy_incohe[0])
raise ValueError("compton")
x0 = energy_incohe[j0]
x1 = energy_incohe[j1]
y0 = value_incohe[j0]
y1 = value_incohe[j1]
incohe[n] = exp((log(y0) * log(x1/x) + log(y1) * log(x/x0))/log(x1/x0))
#photoelectric does not need to interpolate anything
j1 = 0
for n in range(len(energy)):
x = energy[n]
if x < energy_photo[0]:
continue
j1 = 0
photo[n] = value_photo[j1]
j1 += 1
photo[energy>=energy_photo[0]] = value_photo[:]
#convert to keV and cut at 500 keV
energy *= 1000.
indices = numpy.nonzero(energy<=500.)
energy = energy[indices]
photo = photo[indices]
cohe = cohe[indices]
incohe = incohe[indices]
#I cut at 500 keV, I do not need to take the pair production
total = photo + cohe + incohe
#now I am ready to write a Specfile
ele = Elements[i-1]
text = '#S %d %s\n' % (i, ele)
text += '#N %d\n' % (7+len(photo_label_list))
labels = '#L PhotonEnergy[keV]'
labels += ' Rayleigh(coherent)[barn/atom]'
labels += ' Compton(incoherent)[barn/atom]'
labels += ' CoherentPlusIncoherent[barn/atom]'
labels += ' Photoelectric[barn/atom]'
if LONG_LABELS:
for label in photo_long_label_list:
labels += " "+label.replace(" ","")+"[barn/atom]"
else:
for label in photo_label_list:
labels += " "+label+"[barn/atom]"
labels += " AllOthers[barn/atom]"
labels += ' TotalCrossSection[barn/atom]\n'
if not BARNS:
labels = labels.replace("barn/atom", "cm2/g")
factor = (1.0E-24*AVOGADRO_NUMBER)/EPDLParser.getAtomicWeights()[i-1]
else:
factor = 1.0
text += labels
if 0:
fformat = "%g %g %g %g %g"
else:
fformat = "%.7E %.6E %.6E %.6E %.6E"
outfile.write(text)
cohe *= factor
incohe *= factor
photo *= factor
total *= factor
for n in range(len(energy)):
if energy[n] == (1000. * energy_photo[0]):
# one additional line
line = fformat % (energy[n],
cohe[n],
incohe[n],
cohe[n]+incohe[n],
0.0)
for l in photo_label_list:
line += " 0."
line += " 0.0 %.6E\n" % (cohe[n]+incohe[n])
outfile.write(line)
line = fformat % (energy[n],
cohe[n],
incohe[n],
cohe[n]+incohe[n],
photo[n])
d = 0.0
for l in photo_label_list:
a = photo_dict[l]['value'][n] * factor
#this tiny modification saves 20 Mbytes ...
if a > 0.0:
line += " %.6E" % a
else:
line += " 0."
d += a
restOfShells = photo[n]-d
if (i < firstNonZeroPhotoelectric) or (restOfShells < 1.0E-7):
line += " 0.0 %.6E\n" % (total[n])
else:
line += " %.6E %.6E\n" % (restOfShells, total[n])
outfile.write(line)
outfile.write('\n')
outfile.close()
|