1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2019 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """
Module to calculate a set of ROIs on a stack of data.
"""
import os
import numpy
from PyMca5.PyMcaIO import ConfigDict
import time
import logging
_logger = logging.getLogger(__name__)
class StackROIBatch(object):
def __init__(self):
self._config = {}
def setConfiguration(self, configuration):
self._config["ROI"] = configuration["ROI"]
def getConfiguration(self):
return self._config
def setConfigurationFile(self, ffile):
if not os.path.exists(ffile):
raise IOError("File <%s> does not exists" % ffile)
configuration = ConfigDict.ConfigDict()
configuration.read(ffile)
self.setConfiguration(configuration)
def batchROIMultipleSpectra(self, x=None, y=None,
configuration=None, net=True,
xAtMinMax=False, index=None,
xLabel=None):
"""
This method performs the actual fit. The y keyword is the only mandatory input argument.
:param x: 1D array containing the x axis (usually the channels) of the spectra.
:param y: 3D array containing the data, usually [nrows, ncolumns, nchannels]
:param weight: 0 Means no weight, 1 Use an average weight, 2 Individual weights (slow)
:param net: 0 Means no subtraction, 1 Calculate
:param xAtMinMax: if True, calculate X at maximum and minimum Y . Default is false.
:param index: Index of dimension where to apply the ROIs.
:param xLabel: Type of ROI to be used.
:return: A dictionary with the images and the image names as keys.
"""
if y is None:
raise RuntimeError("y keyword argument is mandatory!")
if hasattr(y, "info") and hasattr(y, "data"):
data = y.data
mcaIndex = y.info.get("McaIndex", -1)
else:
data = y
mcaIndex = -1
if index is None:
index = mcaIndex
if index < 0:
index = len(data.shape) - 1
#workaround a problem with h5py
try:
if index in [0]:
testException = data[0:1]
else:
if len(data.shape) == 2:
testException = data[0:1,-1]
elif len(data.shape) == 3:
testException = data[0:1,0:1,-1]
except AttributeError:
txt = "%s" % type(data)
if 'h5py' in txt:
_logger.info("Implementing h5py workaround")
import h5py
data = h5py.Dataset(data.id)
else:
raise
# make sure to get x data
if x is None:
x = numpy.arange(data.shape[index]).astype(numpy.float32)
if configuration is not None:
self.setConfiguration(configuration)
# read the current configuration
config = self.getConfiguration()
# start the work
roiList0 = config["ROI"]["roilist"]
if type(roiList0) not in [type([]), type((1,))]:
roiList0 = [roiList0]
# operate only on compatible ROIs
roiList = []
for roi in roiList0:
if roi.upper() == "ICR":
roiList.append(roi)
roiType = config["ROI"]["roidict"][roi]["type"]
if xLabel is None:
roiList.append(roi)
elif xLabel.lower() == roiType.lower():
roiList.append(roi)
else:
_logger.info("ROI <%s> ignored")
# only usual spectra case supported
if index != (len(data.shape) - 1):
raise IndexError("Only stacks of spectra supported")
if len(data.shape) != 3:
txt = "For the time being only "
txt += "three dimensional arrays supported"
raise NotImplemented(txt)
if len(data.shape) != 3:
txt = "For the time being only "
txt += "three dimensional arrays supported"
raise NotImplemented(txt)
totalSpectra = 1
for i in range(len(data.shape)):
if i != index:
totalSpectra *= data.shape[i]
if x.size != data.shape[index]:
raise NotImplemented("All the spectra should share same X axis")
jStep = min(1000, data.shape[1])
nRois = len(roiList)
idx = [None] * nRois
xw = [None] * nRois
iXMinList = [None] * nRois
iXMaxList = [None] * nRois
nRows = data.shape[0]
nColumns = data.shape[1]
if xAtMinMax:
results = numpy.zeros((nRois * 4, nRows, nColumns), numpy.float64)
names = [None] * 4 * nRois
else:
results = numpy.zeros((nRois * 2, nRows, nColumns), numpy.float64)
names = [None] * 2 * nRois
for i in range(0, data.shape[0]):
if i == 0:
chunk = numpy.zeros((jStep,
data.shape[index]),
numpy.float64)
xData = x
jStart = 0
while jStart < data.shape[1]:
jEnd = min(jStart + jStep, data.shape[1])
chunk[:(jEnd - jStart)] = data[i, jStart: jEnd]
for j, roi in enumerate(roiList):
if i == 0:
roiType = config["ROI"]["roidict"][roi]["type"]
roiLine = roi
roiFrom = config["ROI"]["roidict"][roi]["from"]
roiTo = config["ROI"]["roidict"][roi]["to"]
if roiLine == "ICR":
xw[j] = xData
idx[j] = numpy.arange(len(xData))
iXMinList[j] = idx[j][0]
iXMaxList[j] = idx[j][-1]
else:
idx[j] = numpy.nonzero((roiFrom <= xData) & (xData <= roiTo))[0]
if len(idx):
xw[j] = xData[idx[j]]
iXMinList[j] = numpy.argmin(xw[j])
iXMaxList[j] = numpy.argmax(xw[j])
else:
xw[j] = None
names[j] = "ROI " + roiLine
names[j + nRois] = "ROI "+ roiLine + " Net"
if xAtMinMax:
names[j + 2 * nRois] = "ROI "+ roiLine + (" %s at Max." % roiType)
names[j + 3 * nRois] = "ROI "+ roiLine + (" %s at Min." % roiType)
if xw[j] is None:
# no points in the ROI
rawSum = 0.0
netSum = 0.0
else:
tmpArray = chunk[:(jEnd - jStart), idx[j]]
rawSum = tmpArray.sum(axis=-1, dtype=numpy.float64)
deltaX = xw[j][iXMaxList[j]] - xw[j][iXMinList[j]]
left = tmpArray[:, iXMinList[j]]
right = tmpArray[:, iXMaxList[j]]
deltaY = right - left
if abs(deltaX) > 0.0:
slope = deltaY / float(deltaX)
background = left * len(xw[j])+ slope * \
(xw[j] - xw[j][iXMinList[j]]).sum(dtype=numpy.float64)
netSum = rawSum - background
else:
netSum = 0.0
results[j][i,:(jEnd - jStart)] = rawSum
results[j + nRois][i,:(jEnd - jStart)] = netSum
if xAtMinMax:
if xw[j] is None:
# what can be the Min and the Max when there is nothing in the ROI?
_logger.warning("No Min. Max for ROI <%s>. Empty ROI" % roiLine)
else:
# maxImage
results[j + 2 * nRois][i, :(jEnd - jStart)] = \
xw[j][numpy.argmax(tmpArray, axis=1)]
# minImage
results[j + 3 * nRois][i, :(jEnd - jStart)] = \
xw[j][numpy.argmin(tmpArray, axis=1)]
jStart = jEnd
outputDict = {'images':results,
'names':names}
return outputDict
def getFileListFromPattern(pattern, begin, end, increment=None):
if type(begin) == type(1):
begin = [begin]
if type(end) == type(1):
end = [end]
if len(begin) != len(end):
raise ValueError(\
"Begin list and end list do not have same length")
if increment is None:
increment = [1] * len(begin)
elif type(increment) == type(1):
increment = [increment]
if len(increment) != len(begin):
raise ValueError(\
"Increment list and begin list do not have same length")
fileList = []
if len(begin) == 1:
for j in range(begin[0], end[0] + increment[0], increment[0]):
fileList.append(pattern % (j))
elif len(begin) == 2:
for j in range(begin[0], end[0] + increment[0], increment[0]):
for k in range(begin[1], end[1] + increment[1], increment[1]):
fileList.append(pattern % (j, k))
elif len(begin) == 3:
raise ValueError("Cannot handle three indices yet.")
for j in range(begin[0], end[0] + increment[0], increment[0]):
for k in range(begin[1], end[1] + increment[1], increment[1]):
for l in range(begin[2], end[2] + increment[2], increment[2]):
fileList.append(pattern % (j, k, l))
else:
raise ValueError("Cannot handle more than three indices.")
return fileList
if __name__ == "__main__":
import glob
import sys
from PyMca5.PyMca import EDFStack
from PyMca5.PyMca import ArraySave
import getopt
_logger.setLevel(logging.DEBUG)
options = ''
longoptions = ['cfg=', 'outdir=',
'tif=', #'listfile=',
'filepattern=', 'begin=', 'end=', 'increment=',
"outfileroot="]
try:
opts, args = getopt.getopt(
sys.argv[1:],
options,
longoptions)
except:
_logger.error(sys.exc_info()[1])
sys.exit(1)
fileRoot = ""
outputDir = None
fileindex = 0
filepattern=None
begin = None
end = None
increment=None
tif=0
for opt, arg in opts:
if opt in ('--cfg'):
configurationFile = arg
elif opt in '--begin':
if "," in arg:
begin = [int(x) for x in arg.split(",")]
else:
begin = [int(arg)]
elif opt in '--end':
if "," in arg:
end = [int(x) for x in arg.split(",")]
else:
end = int(arg)
elif opt in '--increment':
if "," in arg:
increment = [int(x) for x in arg.split(",")]
else:
increment = int(arg)
elif opt in '--filepattern':
filepattern = arg.replace('"', '')
filepattern = filepattern.replace("'", "")
elif opt in '--outdir':
outputDir = arg
elif opt in '--outfileroot':
fileRoot = arg
elif opt in ['--tif', '--tiff']:
tif = int(arg)
if filepattern is not None:
if (begin is None) or (end is None):
raise ValueError(\
"A file pattern needs at least a set of begin and end indices")
if filepattern is not None:
fileList = getFileListFromPattern(filepattern, begin, end, increment=increment)
else:
fileList = args
if len(fileList):
dataStack = EDFStack.EDFStack(fileList, dtype=numpy.float32)
else:
print("OPTIONS:", longoptions)
sys.exit(0)
if outputDir is None:
print("RESULTS WILL NOT BE SAVED: No output directory specified")
t0 = time.time()
worker = StackROIBatch()
worker.setConfigurationFile(configurationFile)
result = worker.batchROIMultipleSpectra(y=dataStack)
if outputDir is not None:
imageNames = result['names']
images = result['images']
nImages = images.shape[0]
if fileRoot in [None, ""]:
fileRoot = "images"
if not os.path.exists(outputDir):
os.mkdir(outputDir)
imagesDir = os.path.join(outputDir, "IMAGES")
if not os.path.exists(imagesDir):
os.mkdir(imagesDir)
imageList = [None] * (nImages)
fileImageNames = [None] * (nImages)
j = 0
for i in range(nImages):
name = imageNames[i].replace(" ", "-")
fileImageNames[j] = name
imageList[j] = images[i]
j += 1
fileName = os.path.join(imagesDir, fileRoot+".edf")
ArraySave.save2DArrayListAsEDF(imageList, fileName,
labels=fileImageNames)
fileName = os.path.join(imagesDir, fileRoot+".csv")
ArraySave.save2DArrayListAsASCII(imageList, fileName, csv=True,
labels=fileImageNames)
if tif:
i = 0
for i in range(len(fileImageNames)):
label = fileImageNames[i]
fileName = os.path.join(imagesDir,
fileRoot + fileImageNames[i] + ".tif")
ArraySave.save2DArrayListAsMonochromaticTiff([imageList[i]],
fileName,
labels=[label],
dtype=numpy.float32)
|