1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2020-2022 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import sys
import numpy
import posixpath
import h5py
import logging
_logger = logging.getLogger(__name__)
try:
from PyMca5.PyMcaIO import NexusUtils
HAS_NEXUS_UTILS = True
except:
# this should only happen if somebody uses this module out of the distribution
HAS_NEXUS_UTILS = False
_logger.info("PyMca5.PyMcaIO.NexusUtils could not be imported")
if sys.version_info < (3,):
strdtype = h5py.special_dtype(vlen=unicode)
else:
strdtype = h5py.special_dtype(vlen=str)
def exportStackList(stackList, filename, channels=None, calibration=None):
if hasattr(stackList, "data") and hasattr(stackList, "info"):
stackList = [stackList]
if isinstance(filename, h5py.File):
h5 = filename
_exportStackList(stackList,
h5,
channels=channels,
calibration=calibration)
else:
h5 = h5py.File(filename, "w-")
try:
if HAS_NEXUS_UTILS:
NexusUtils.nxRootInit(h5)
_exportStackList(stackList,
h5,
channels=channels,
calibration=calibration)
finally:
h5.close()
def _exportStackList(stackList, h5, path=None, channels=None, calibration=None):
if path is None:
# initialize the entry
entryName = "stack"
else:
entryName = path
if entryName not in h5 and HAS_NEXUS_UTILS:
NexusUtils.nxEntryInit(h5, entryName)
if calibration is None:
calibration = [None] * len(stackList)
if channels is None:
channels = [None] * len(stackList)
entry = h5.require_group(entryName)
att = "NX_class"
if att not in entry.attrs:
entry.attrs[att] = u"NXentry"
instrumentName = "instrument"
instrument = entry.require_group(instrumentName)
if att not in instrument.attrs:
instrument.attrs[att] = u"NXinstrument"
# save all the stacks
dataTargets = []
i = 0
for stack in stackList:
detectorName = "detector_%02d" % i
detector = instrument.require_group(detectorName)
if att not in detector.attrs:
detector.attrs[att] = u"NXdetector"
detectorPath = posixpath.join("/",
entryName,
instrumentName,
detectorName)
exportStack(stack,
h5,
detectorPath,
channels=channels[i],
calibration=calibration[i])
dataPath = posixpath.join(detectorPath, "data")
dataTargets.append(dataPath)
i += 1
# create NXdata
measurement = entry.require_group("measurement")
if att not in measurement.attrs:
measurement.attrs[att] = u"NXdata"
att = "default"
if att not in entry.attrs:
entry.attrs[att] = u"measurement"
i = 0
auxiliary = []
for target in dataTargets:
name = posixpath.basename(posixpath.dirname(target))
measurement[name] = h5py.SoftLink(target)
if i == 0:
measurement.attrs["signal"] = name
else:
auxiliary.append(name)
if len(auxiliary):
measurement.attrs["auxiliary_signals"] = numpy.array(auxiliary,
dtype=strdtype)
h5.flush()
return entryName
def exportStack(stack, h5object, path, channels=None, calibration=None):
"""
Exports the stack to the given HDF5 file object and path
"""
h5g = h5object.require_group(path)
# destination should be an NXdetector group
att = "NX_class"
if att not in h5g.attrs:
h5g.attrs[att] = u"NXdetector"
elif h5g.attrs[att] != u"NXdetector":
_logger.warning("Invalid destination NXclass %s" % h5g.attrs[att])
# put the data themselves
if hasattr(stack, "data") and hasattr(stack, "info"):
data = stack.data
elif hasattr(stack, "shape") and hasattr(stack, "dtype"):
# numpy like object received
data = stack
else:
raise TypeError("Unrecognized stack object received")
dataset = h5g.require_dataset("data",
shape=data.shape,
dtype=data.dtype)
dataset[:] = data
# support a simple array of data
if hasattr(stack, "info"):
info = stack.info
else:
info = {}
# provide a hint for the data type
mcaIndex = info.get('McaIndex', -1)
if mcaIndex < 0:
mcaIndex = len(data.shape) + mcaIndex
if len(data.shape) > 1:
if mcaIndex == 0:
if len(data.shape) == 3:
dataset.attrs["interpretation"] = u"image"
else:
dataset.attrs["interpretation"] = u"spectrum"
# get the calibration
if calibration is None:
calibration = info.get('McaCalib', [0.0, 1.0, 0.0])
h5g["calibration"] = numpy.array(calibration, copy=False)
# get the time
for key in ["McaLiveTime", "live_time"]:
if key in info and info[key] is not None:
# TODO: live time can actually be elapsed time!!!
h5g["live_time"] = numpy.array(info[key], copy=False)
for key in ["preset_time", "elapsed_time"]:
if key in info and info[key] is not None:
h5g[key] = numpy.array(info[key], copy=False)
# get the channels
if channels is None:
if hasattr(stack, "x"):
if hasattr(stack.x, "__len__"):
if len(stack.x):
channels = stack.x[0]
if channels is not None:
h5g["channels"] = numpy.array(channels, copy=False)
# the positioners
posKey = "positioners"
if posKey in info and info[posKey] is not None:
posGroupPath = posixpath.join(posixpath.dirname(path), posKey)
posGroup = h5object.require_group(posGroupPath)
att = "NX_class"
if att not in posGroup.attrs:
posGroup.attrs[att] = u"NXcollection"
for key in info[posKey]:
if key not in posGroup:
posGroup[key] = numpy.array(info[posKey][key], copy=False)
# the scales for the common rectangular map case
if "xScale" in info and "yScale" in info:
xScale = info["xScale"]
yScale = info["yScale"]
ndims = len(data.shape)
if ndims == 3 and (mcaIndex in [0, 2, -1]):
# TODO: Possibility to label the X and Y axes
# TODO: Possibility to set the title
# labels and title should be provided
map_ = h5g.require_group("map")
att = "NX_class"
if att not in map_.attrs:
map_.attrs[att] = u"NXdata"
map_.attrs["signal"] = u"data"
map_["data"] = h5py.SoftLink(dataset.name)
map_.attrs["signal"] = u"data"
dim0_name = "dim0"
dim1_name = "dim1"
dim2_name = "dim2"
if mcaIndex == 0:
# image stack -> n_frame, n_rows, n_columns
dim0_long_name = "channels"
dim1_long_name = "y"
dim2_long_name = "x"
dim1 = map_.require_dataset(dim1_name,
shape=(data.shape[1],),
dtype=numpy.float32)
dim2 = map_.require_dataset(dim2_name,
shape=(data.shape[2],),
dtype=numpy.float32)
map_[dim0_name] = h5py.SoftLink(h5g["channels"].name)
dim0 = map_[dim0_name]
dim1[:] = yScale[0] + yScale[1] * numpy.arange(len(dim1))
dim2[:] = xScale[0] + xScale[1] * numpy.arange(len(dim2))
dim1.attrs["long_name"] = dim1_long_name
dim2.attrs["long_name"] = dim2_long_name
else:
# spectrum stack -> n_rows, n_columns, n_channels
dim0_long_name = "y"
dim1_long_name = "x"
dim2_long_name = "channels"
dim1 = map_.require_dataset(dim1_name,
shape=(data.shape[1],),
dtype=numpy.float32)
dim0 = map_.require_dataset(dim0_name,
shape=(data.shape[0],),
dtype=numpy.float32)
dim0[:] = yScale[0] + yScale[1] * numpy.arange(len(dim0))
dim1[:] = xScale[0] + xScale[1] * numpy.arange(len(dim1))
if "channels" in h5g:
map_[dim2_name] = h5py.SoftLink(h5g["channels"].name)
else:
map_[dim2_name] = numpy.arange(data.shape[-1],
dtype=numpy.float32)
dim2 = map_[dim2_name]
dim0.attrs["long_name"] = dim0_long_name
dim1.attrs["long_name"] = dim1_long_name
axes = [dim0_name, dim1_name, dim2_name]
map_.attrs["axes"] = numpy.array(axes, dtype=strdtype)
# set the default detector plot
att = "default"
if att not in h5g.attrs:
h5g.attrs[att] = u"map"
# should make use of standard HDF5 scales and labeling
# instead of (or in addition to) the NeXus approach?
USE_HDF5_SCALES = False
if USE_HDF5_SCALES:
dim0.make_scale(dim0_long_name)
dim1.make_scale(dim1_long_name)
dim2.make_scale(dim2_long_name)
#dataset.dims[0].label = dim0_name
#dataset.dims[1].label = dim1_name
#dataset.dims[2].label = dim2_name
dataset.dims[0].attach_scale(dim0)
dataset.dims[1].attach_scale(dim1)
dataset.dims[2].attach_scale(dim2)
|