File: McaStackExport.py

package info (click to toggle)
pymca 5.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,392 kB
  • sloc: python: 155,456; ansic: 15,843; makefile: 116; sh: 73; xml: 55
file content (296 lines) | stat: -rw-r--r-- 11,550 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2020-2022 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import sys
import numpy
import posixpath
import h5py
import logging
_logger = logging.getLogger(__name__)

try:
    from PyMca5.PyMcaIO import NexusUtils
    HAS_NEXUS_UTILS = True
except:
    # this should only happen if somebody uses this module out of the distribution
    HAS_NEXUS_UTILS = False
    _logger.info("PyMca5.PyMcaIO.NexusUtils could not be imported")

if sys.version_info < (3,):
    strdtype = h5py.special_dtype(vlen=unicode)
else:
    strdtype = h5py.special_dtype(vlen=str)

def exportStackList(stackList, filename, channels=None, calibration=None):
    if hasattr(stackList, "data") and hasattr(stackList, "info"):
        stackList = [stackList]
    if isinstance(filename, h5py.File):
        h5 = filename
        _exportStackList(stackList,
                         h5,
                         channels=channels,
                         calibration=calibration)
    else:
        h5 = h5py.File(filename, "w-")
        try:
            if HAS_NEXUS_UTILS:
                NexusUtils.nxRootInit(h5)
            _exportStackList(stackList,
                             h5,
                             channels=channels,
                             calibration=calibration)
        finally:
            h5.close()

def _exportStackList(stackList, h5, path=None, channels=None, calibration=None):
    if path is None:
        # initialize the entry
        entryName = "stack"
    else:
        entryName = path
    if entryName not in h5 and HAS_NEXUS_UTILS:
        NexusUtils.nxEntryInit(h5, entryName)
    if calibration is None:
        calibration = [None] * len(stackList)
    if channels is None:
        channels = [None] * len(stackList)
    entry = h5.require_group(entryName)
    att = "NX_class"
    if att not in entry.attrs:
        entry.attrs[att] = u"NXentry"
    instrumentName = "instrument"
    instrument = entry.require_group(instrumentName)
    if att not in instrument.attrs:
        instrument.attrs[att] = u"NXinstrument"

    # save all the stacks
    dataTargets = []
    i = 0
    for stack in stackList:
        detectorName = "detector_%02d" % i
        detector = instrument.require_group(detectorName)
        if att not in detector.attrs:
            detector.attrs[att] = u"NXdetector"
        detectorPath = posixpath.join("/",
                                      entryName,
                                      instrumentName,
                                      detectorName)
        exportStack(stack,
                    h5,
                    detectorPath,
                    channels=channels[i],
                    calibration=calibration[i])
        dataPath = posixpath.join(detectorPath, "data")
        dataTargets.append(dataPath)
        i += 1

    # create NXdata
    measurement = entry.require_group("measurement")
    if att not in measurement.attrs:
        measurement.attrs[att] = u"NXdata"
    att = "default"
    if att not in entry.attrs:
        entry.attrs[att] = u"measurement"
    i = 0
    auxiliary = []
    for target in dataTargets:
        name = posixpath.basename(posixpath.dirname(target))
        measurement[name] = h5py.SoftLink(target)
        if i == 0:
            measurement.attrs["signal"] = name
        else:
            auxiliary.append(name)
    if len(auxiliary):
        measurement.attrs["auxiliary_signals"] = numpy.array(auxiliary,
                                                             dtype=strdtype)
    h5.flush()
    return entryName

def exportStack(stack, h5object, path, channels=None, calibration=None):
    """
    Exports the stack to the given HDF5 file object and path
    """
    h5g = h5object.require_group(path)

    # destination should be an NXdetector group
    att = "NX_class"
    if att not in h5g.attrs:
        h5g.attrs[att] = u"NXdetector"
    elif h5g.attrs[att] != u"NXdetector":
        _logger.warning("Invalid destination NXclass %s" % h5g.attrs[att])

    # put the data themselves
    if hasattr(stack, "data") and hasattr(stack, "info"):
        data = stack.data
    elif hasattr(stack, "shape") and hasattr(stack, "dtype"):
        # numpy like object received
        data = stack
    else:
        raise TypeError("Unrecognized stack object received")

    dataset = h5g.require_dataset("data",
                                  shape=data.shape,
                                  dtype=data.dtype)
    dataset[:] = data

    # support a simple array of data
    if hasattr(stack, "info"):
        info = stack.info
    else:
        info = {}

    # provide a hint for the data type
    mcaIndex = info.get('McaIndex', -1)
    if mcaIndex < 0:
        mcaIndex = len(data.shape) + mcaIndex
    if len(data.shape) > 1:
        if mcaIndex == 0:
            if len(data.shape) == 3:
                dataset.attrs["interpretation"] = u"image"
        else:
            dataset.attrs["interpretation"] = u"spectrum"

    # get the calibration
    if calibration is None:
        calibration = info.get('McaCalib', [0.0, 1.0, 0.0])
    h5g["calibration"] = numpy.array(calibration, copy=False)

    # get the time
    for key in ["McaLiveTime", "live_time"]:
        if key in info and info[key] is not None:
            # TODO: live time can actually be elapsed time!!!
            h5g["live_time"] =  numpy.array(info[key], copy=False)

    for key in ["preset_time", "elapsed_time"]:
        if key in info and info[key] is not None:
            h5g[key] =  numpy.array(info[key], copy=False)

    # get the channels
    if channels is None:
        if hasattr(stack, "x"):
            if hasattr(stack.x, "__len__"):
                if len(stack.x):
                    channels = stack.x[0]

    if channels is not None:
        h5g["channels"] = numpy.array(channels, copy=False)

    # the positioners
    posKey = "positioners"
    if posKey in info and info[posKey] is not None:
        posGroupPath = posixpath.join(posixpath.dirname(path), posKey)
        posGroup = h5object.require_group(posGroupPath)
        att = "NX_class"
        if att not in posGroup.attrs:
            posGroup.attrs[att] = u"NXcollection"
        for key in info[posKey]:
            if key not in posGroup:
                posGroup[key] = numpy.array(info[posKey][key], copy=False)

    # the scales for the common rectangular map case
    if "xScale" in info and "yScale" in info:
        xScale = info["xScale"]
        yScale = info["yScale"]
        ndims = len(data.shape)
        if ndims == 3 and (mcaIndex in [0, 2, -1]):
            # TODO: Possibility to label the X and Y axes
            # TODO: Possibility to set the title
            # labels and title should be provided
            map_ = h5g.require_group("map")
            att = "NX_class"
            if att not in map_.attrs:
                map_.attrs[att] = u"NXdata"
            map_.attrs["signal"] = u"data"
            map_["data"] = h5py.SoftLink(dataset.name)
            map_.attrs["signal"] = u"data"
            dim0_name = "dim0"
            dim1_name = "dim1"
            dim2_name = "dim2"
            if mcaIndex == 0:
                # image stack -> n_frame, n_rows, n_columns
                dim0_long_name = "channels"
                dim1_long_name = "y"
                dim2_long_name = "x"
                dim1 = map_.require_dataset(dim1_name,
                                  shape=(data.shape[1],),
                                  dtype=numpy.float32)
                dim2 = map_.require_dataset(dim2_name,
                                  shape=(data.shape[2],),
                                  dtype=numpy.float32)
                map_[dim0_name] = h5py.SoftLink(h5g["channels"].name)
                dim0 = map_[dim0_name]
                dim1[:] = yScale[0] + yScale[1] * numpy.arange(len(dim1))
                dim2[:] = xScale[0] + xScale[1] * numpy.arange(len(dim2))
                dim1.attrs["long_name"] = dim1_long_name
                dim2.attrs["long_name"] = dim2_long_name
            else:
                # spectrum stack -> n_rows, n_columns, n_channels
                dim0_long_name = "y"
                dim1_long_name = "x"
                dim2_long_name = "channels"
                dim1 = map_.require_dataset(dim1_name,
                                  shape=(data.shape[1],),
                                  dtype=numpy.float32)
                dim0 = map_.require_dataset(dim0_name,
                                  shape=(data.shape[0],),
                                  dtype=numpy.float32)
                dim0[:] = yScale[0] + yScale[1] * numpy.arange(len(dim0))
                dim1[:] = xScale[0] + xScale[1] * numpy.arange(len(dim1))
                if "channels" in h5g:
                    map_[dim2_name] = h5py.SoftLink(h5g["channels"].name)
                else:
                    map_[dim2_name] = numpy.arange(data.shape[-1],
                                                   dtype=numpy.float32)
                dim2 = map_[dim2_name]
                dim0.attrs["long_name"] = dim0_long_name
                dim1.attrs["long_name"] = dim1_long_name
            axes = [dim0_name, dim1_name, dim2_name]
            map_.attrs["axes"] = numpy.array(axes, dtype=strdtype)

            # set the default detector plot
            att = "default"
            if att not in h5g.attrs:
                h5g.attrs[att] = u"map"

            # should make use of standard HDF5 scales and labeling
            # instead of (or in addition to) the NeXus approach?
            USE_HDF5_SCALES = False
            if USE_HDF5_SCALES:
                dim0.make_scale(dim0_long_name)
                dim1.make_scale(dim1_long_name)
                dim2.make_scale(dim2_long_name)
                #dataset.dims[0].label = dim0_name
                #dataset.dims[1].label = dim1_name
                #dataset.dims[2].label = dim2_name
                dataset.dims[0].attach_scale(dim0)
                dataset.dims[1].attach_scale(dim1)
                dataset.dims[2].attach_scale(dim2)