File: McaStackView.py

package info (click to toggle)
pymca 5.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,392 kB
  • sloc: python: 155,456; ansic: 15,843; makefile: 116; sh: 73; xml: 55
file content (684 lines) | stat: -rw-r--r-- 22,191 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2019-2020 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "Wout De Nolf"
__contact__ = "wout.de_nolf@esrf.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"

import numpy
import logging
import numbers
import itertools

_logger = logging.getLogger(__name__)


def sliceNormalize(slc, n):
    """
    Slice with positive integers

    :param slice slc:
    :param int n:
    :returns slice:
    """
    start, stop, step = slc.indices(n)
    if slc.stop is None and step < 0:
        stop = None
    return slice(start, stop, step)


def sliceLen(slc, n):
    """
    Length after slicing range(n)

    :param slice slc:
    :param int n:
    :returns int:
    """
    start, stop, step = slc.indices(n)
    if step < 0:
        one = -1
    else:
        one = 1
    return max(0, (stop - start + step - one) // step)


def sliceReverse(slc, n):
    """
    Returns slice that yields same items in reversed order

    :param slice slc:
    :param int n:
    :returns slice:
    """
    start, stop, step = slc.indices(n)
    if step < 0:
        one = 1
    else:
        one = -1
    stop = (stop-start+one)//step*step+start
    start += one
    if start == -1:
        start = None
    return slice(stop, start, -step)


def sliceComplement(slc, n):
    """
    Returns indices not in slice

    :param slice slc:
    :param int n:
    :returns list(int):
    """
    lst1 = list(range(n))
    lst2 = lst1[slc]
    return [i for i in lst1 if i not in lst2]


def chunkIndexGen(start, stop, step):
    """
    Index equivalent to list(range(start, stop, sign(step))) but given
    in chunks of "step" items (last chunk may have less items)

    :param start:
    :param stop:
    :param step:
    :returns generator(tuple): generates (index(slice), nElements(int))
    """
    if step is None:
        step = 1
    if not isinstance(start, numbers.Integral):
        raise TypeError('{} object cannot be interpreted as an integer'
                        .format(type(start)))
    if not isinstance(stop, numbers.Integral):
        raise TypeError('{} object cannot be interpreted as an integer'
                        .format(type(stop)))
    if not isinstance(step, numbers.Integral):
        raise TypeError('{} object cannot be interpreted as an integer'
                        .format(type(step)))
    if step < 0:
        func = max
        one = -1
    else:
        func = min
        one = 1
    for a in range(start, stop, step):
        b = func(a+step, stop)
        n = abs(b-a)
        if b == -1:
            b = None
        yield slice(a, b, one), n


def possitive_index(i, n):
    _logger.warning("Use positive_index")
    return positive_index(i, n)

def positive_index(i, n):
    """
    :param int i:
    :param int n:
    """
    if i < 0:
        return i + max((-i)//n, 1)*n
    else:
        return i


def chunkIndexParameters(shape, nChunksMax, chunkAxes=None, axesOrder=None,
                         chunkAxesSlice=None, defaultOrder='C'):
    """
    :param tuple(int) chunkAxes: dimensions that define the chunk
    :param tuple(int) axesOrder: order of other dimensions to be sliced
    :param tuple(slice) chunkAxesSlice: slice chunk dimensions
    :param str defaultOrder: 'C' (last index varies the fastest, default)
                             'F' (first index varies the fastest)
    :returns tuple:
    """
    # Check whether dimensions are compatible
    ndim = len(shape)
    if chunkAxes is None:
        chunkAxes = tuple()
    chunkAxes = tuple(positive_index(i, ndim) for i in chunkAxes)
    if chunkAxesSlice is None:
        chunkAxesSlice = (slice(None),)*len(chunkAxes)
    else:
        if len(chunkAxes) != len(chunkAxesSlice):
            raise ValueError('Chunk slicing does not correspond with chunk dimensions')
    aAxesOrder = list(range(ndim))
    if defaultOrder == 'C':
        aAxesOrder = aAxesOrder[::-1]
    aAxesOrder = tuple(i for i in aAxesOrder if i not in chunkAxes)
    if axesOrder is None:
        axesOrder = aAxesOrder
    else:
        axesOrder = tuple(positive_index(i, ndim) for i in axesOrder)
        if list(sorted((axesOrder))) != list(sorted((aAxesOrder))):
            raise ValueError('axesOrder and chunkAxes do not correspond')
    nChunksMax = max(nChunksMax, 1)
    return nChunksMax, chunkAxes, axesOrder, chunkAxesSlice


def chunkIndexProduct(chunkIndex, chunkAxes, axesOrder):
    """
    Iterator over the cartesian product of chunkIndex

    :param list(list(slice,int)) chunkIndex:
    :param tuple chunkAxes:
    :param tuple axesOrder:
    :returns generator: index(tuple), shape(tuple), nChunks(int)
    """
    axes = chunkAxes+axesOrder[::-1]
    ndim = len(axes)
    idxData = [None]*ndim
    chunkShape = [None]*ndim
    for idxChunk in itertools.product(*chunkIndex):
        nChunks = 1
        for axis, (idx, n) in zip(axes, idxChunk):
            idxData[axis] = idx
            chunkShape[axis] = n
            if axis in axesOrder:
                nChunks *= n
        yield tuple(idxData), tuple(chunkShape), nChunks


def fullChunkIndex(shape, nChunksMax, **kwargs):
    """
    Returns a chunk index generator + chunk info

    :param tuple shape: array shape to be sliced
    :param int nChunksMax: maximal number of chunks
    :param **kwargs: see chunkIndexParameters
    :returns tuple: chunkIndexGenerator(generates tuples: (index(tuple), shape(tuple), nChunks(int))),
                    chunkAxes(tuple),
                    axesOrder(tuple),
                    nChunksMax(may differ from input nChunksMax)
    """
    nChunksMax, chunkAxes, axesOrder, chunkAxesSlice = chunkIndexParameters(shape, nChunksMax, **kwargs)

    # List of indices for each chunkAxes dimension
    chunkIndex1 = []
    for axis, idx in zip(chunkAxes, chunkAxesSlice):
        nAxis = shape[axis]
        idxAxis = [(idx, sliceLen(idx, nAxis))]
        chunkIndex1.append(idxAxis)

    # List of indices of each axesOrder dimension
    nItems = 1
    nBuffer = 1
    chunkIndex2 = []
    for axis in axesOrder:
        nAxis = shape[axis]
        nItemsNew = nItems*nAxis
        if nItemsNew <= nChunksMax:
            idxAxis = [(slice(None), nAxis)]
            nBuffer *= nAxis
            #print('Axis {} (size={}): {}x{} chunks'.format(axis, nAxis, 1, nAxis))
        elif nItems > nChunksMax:
            idxAxis = list(chunkIndexGen(0, nAxis, 1))
            #print('Axis {} (size={}): {}x{} chunks'.format(axis, nAxis, len(idxAxis), 1))
        else:
            # Axis will be split in pieces with length "step"
            step = nChunksMax//nItems
            # We have "n" such pieces (last piece can have smaller length)
            n = (nAxis//step) + int(bool(nAxis % step))
            # Maximize the length of the last piece
            # example: nAxis=51 and step=40 -> step = 26
            step = (nAxis//n) + int(bool(nAxis % n))
            nBuffer *= step
            idxAxis = list(chunkIndexGen(0, nAxis, step))
            #print('Axis {} (size={}): {}x{} chunks'.format(axis, nAxis, len(idxAxis), step))
        nItems = nItemsNew
        chunkIndex2.append(idxAxis)

    # Prepare for cartesian product (last one is the inner loop)
    chunkIndex = chunkIndex1 + chunkIndex2[::-1]
    chunkIndex = chunkIndexProduct(chunkIndex, chunkAxes, axesOrder)
    return chunkIndex, chunkAxes, axesOrder, nBuffer


def intListIndexAxis(shape, axes):
    """
    Get int-list dimension after indexing

    :param tuple shape: shape to be indexed
    :param list axes: dimensions with int-list index
    :returns int or None: int-list dimension after indexing
    """
    nLst = len(axes)
    if nLst == 0:
        axis = None
    elif nLst == 1:
        axis = axes[0]
    else:
        if all(numpy.diff(sorted(axes)) == 1):
            axis = min(axes)
        else:
            axis = 0
    return axis


def maskedChunkIndex(shape, nChunksMax, mask=None, **kwargs):
    """
    Returns a chunk index generator + chunk info

    :param tuple shape: array shape to be sliced
    :param int nChunksMax: maximal number of chunks
    :param array or tuple(list(int)) mask: mask in axesOrder dimensions (bool array or list of indices)
    :param **kwargs: see chunkIndexParameters
    :returns tuple: chunkIndexGenerator(generates tuples: (index(tuple), shape(tuple), nChunks(int))),
                    chunkAxes(tuple),
                    axesOrder(tuple),
                    nChunksMax(may differ from input nChunksMax)
    """
    full = mask is None
    if not full:
        full = mask.all()
    if full:
        return fullChunkIndex(shape, nChunksMax, **kwargs)
    kwargs['defaultOrder'] = 'F'
    nChunksMax, chunkAxes, axesOrder, chunkAxesSlice = chunkIndexParameters(shape, nChunksMax, **kwargs)
    if len(axesOrder) != mask.ndim:
        raise ValueError('Mask does not have the correct dimensions')

    # Index for chunkAxes dimensions
    ndim = len(shape)
    idxAxis = [slice(None)]*ndim
    chunkShape = list(shape)
    for axis, idx in zip(chunkAxes, chunkAxesSlice):
        nAxis = shape[axis]
        idxAxis[axis] = idx
        chunkShape[axis] = sliceLen(idx, nAxis)

    # Shape after indexing (to be modified for each chunk)
    chunkShape = [s for i, s in enumerate(chunkShape)
                  if i not in axesOrder]
    lstAxis = intListIndexAxis(shape, axesOrder)
    if lstAxis is not None:
        chunkShape.insert(lstAxis, None)

    # Index for axesOrder dimensions
    if isinstance(mask, (list, tuple)):
        maskIndex = mask
    else:
        maskIndex = mask.nonzero()
    nAxis = len(maskIndex[0])
    nChunks = (nAxis//nChunksMax) + int(bool(nAxis % nChunksMax))
    chunkIndex = [None]*nChunks
    for i, (idx, nidx) in enumerate(chunkIndexGen(0, nAxis, nChunksMax)):
        for axis, ind in zip(axesOrder, maskIndex):
            idxAxis[axis] = ind[idx]
        chunkShape[lstAxis] = nidx
        chunkIndex[i] = tuple(idxAxis), tuple(chunkShape), nidx
    return chunkIndex, chunkAxes, axesOrder, nChunksMax


def izipChunkItems(*iterables):
    """
    Zip iterators but making sure next is called
    on all items when StopIteration occurs
    """
    bloop = [True]  # because of python 2
    #bloop = True
    def _next(it):
        #nonlocal bloop
        try:
            return next(it)
        except StopIteration:
            bloop[0] = False
            #bloop = False
            return None
    while bloop[0]:
        ret = tuple(_next(it) for it in iterables)
        if bloop[0]:
            yield ret


def chunks_in_memory(shape, dtype, axis=-1, margin=0.01, maximal=None):
    """
    Number of chunks that fit into memory (with a margin)

    :param tuple shape: nD array
    :param dtype:
    :param axis: axes contibuting to one chunk
    :param margin:
    :param maximal:
    :returns: number of slices that fit in memory
    """
    try:
        from psutil import virtual_memory
    except ImportError:
        try:
            from PyMca5.PyMcaMisc.PhysicalMemory import getAvailablePhysicalMemoryOrNone as getMem
        except ImportError:
            from PyMca5.PyMcaMisc.PhysicalMemory import getPhysicalMemoryOrNone as getMem
        nbytes_mem = getMem()
    else:
        nbytes_mem = virtual_memory().available
    if nbytes_mem is None:
        return maximal
    shape_slice = list(shape)
    if isinstance(axis, (tuple, list)):
        for ax in axis:
            shape_slice.pop(ax)
    else:
        shape_slice.pop(axis)
    if not shape_slice:
        raise ValueError('Required: len(axis)<len(shape)')
    n_items = numpy.prod(shape_slice)
    itemsize = numpy.array(0, dtype=dtype).itemsize
    nbytes_chunk = n_items*itemsize
    n_chunks = int((nbytes_mem*margin)/nbytes_chunk)
    if maximal:
        return max(n_chunks, maximal)
    else:
        return n_chunks


class ChunkedView(object):

    def __init__(self, data, nMca=None, mcaAxis=None, mcaSlice=None,
                 dtype=None, readonly=True):
        """
        :param array data: nD array (numpy.ndarray or h5py.Dataset)
        :param num or tuple nMca: maximal number of MCA spectra to be
                                  buffered or maximal buffer memory (e.g. (100, 'mib'))
        :param int mcaAxis:
        :param slice mcaSlice: slice along the MCA axis
        :param dtype:
        :param bool readonly:
        """
        self.mcaAxis = mcaAxis
        self.mcaSlice = mcaSlice
        self.nMca = nMca
        if dtype is None:
            dtype = data.dtype
        self.dtype = dtype
        self._differentType = data.dtype != dtype
        self._buffer = None
        self._data = data
        self.readonly = readonly
        self._isNdarray = isinstance(data, numpy.ndarray)

    @property
    def mcaAxis(self):
        return self._mcaAxis

    @mcaAxis.setter
    def mcaAxis(self, value):
        if value is None:
            value = -1
        self._mcaAxis = value

    @property
    def mcaSlice(self):
        return self._mcaSlice

    @mcaSlice.setter
    def mcaSlice(self, value):
        if value is None:
            value = slice(None)
        self._mcaSlice = value

    @property
    def nChan(self):
        return sliceLen(self.mcaSlice, self.nChanOrg)

    @property
    def nChanOrg(self):
        return self.shapeOrg[self.mcaAxis]

    @property
    def nMca(self):
        try:
            n, unit = self._nMca
        except TypeError:
            return self._nMca
        p = ['b', 'kb', 'mb', 'gb'].index(unit.lower())
        nByteMca = numpy.array([0], self.dtype).itemsize*self.nChan
        return max((n*1024**p)//nByteMca, 1)

    @nMca.setter
    def nMca(self, value):
        self._nMca = value

    @property
    def shape(self):
        return self.nMca, self.nChan

    @property
    def shapeOrg(self):
        return self._data.shape

    @property
    def idxFull(self):
        idx = [slice(None)] * self._data.ndim
        idx[self.mcaAxis] = self.mcaSlice
        return tuple(idx)

    @property
    def idxFullComplement(self):
        idx = [slice(None)] * self._data.ndim
        idx[self.mcaAxis] = sliceComplement(self.mcaSlice, self.nChanOrg)
        return tuple(idx)

    def _prepareAccess(self):
        _logger.debug('Iterate MCA stack in chunks of {} spectra'
                      .format(self.nMca))
        post_copy = not self.readonly
        if self._buffer is None:
            self._buffer = numpy.empty(self.shape, self.dtype)
        return post_copy

    def items(self):
        raise NotImplemented("items method not implemented")


def h5pyMultiListGet(data, value, idx, axesList):
    """
    H5py currently does not support multiple int-array indexing
    """
    # TODO: not one-by-one but use groupby in outer loops
    lstIndices = [idx[axis] for axis in axesList]
    idx = list(idx)
    for iMca, ind in enumerate(zip(*lstIndices)):
        for axis, v in zip(axesList, ind):
            idx[axis] = v
        value[iMca, :] = data[tuple(idx)]


def h5pyMultiListSet(data, value, idx, axesList):
    """
    H5py currently does not support multiple int-array indexing
    """
    lstIndices = [idx[axis] for axis in axesList]
    idx = list(idx)
    for iMca, ind in enumerate(zip(*lstIndices)):
        for axis, v in zip(axesList, ind):
            idx[axis] = v
        data[tuple(idx)] = value[iMca, :]


class MaskedView(ChunkedView):
    """
    View of MCA stack with mask and MCA channel slice, which allows iteration over chunks of spectra
    """

    def __init__(self, data, mask=None, axesOrder=None, **kwargs):
        """
        :param array data: nD array (numpy.ndarray or h5py.Dataset)
        :param array or tuple(list(int)) mask: mask in axesOrder dimensions (bool array or list of indices)
        :param tuple axesOrder: order of other dimensions to be sliced (C order by default)
        :param **kwargs: see ChunkedView
        """
        super(MaskedView, self).__init__(data, **kwargs)
        self.axesOrder = axesOrder
        self._mask = mask

    @property
    def masked(self):
        if self._mask is None:
            return False
        if self._mask.all():
            return False
        return True

    @property
    def chunkInfo(self):
        """
        chunkIndexGenerator, chunkAxes, axesOrder, nMca
        """
        # Use requested nMca and axesOrder, return final ones
        nMca = super(MaskedView, self).nMca
        axesOrder = self._axesOrder
        return maskedChunkIndex(self.shapeOrg, nMca,
                                mask=self._mask,
                                chunkAxes=(self.mcaAxis,),
                                chunkAxesSlice=(self.mcaSlice,),
                                axesOrder=axesOrder)

    @property
    def axesOrder(self):
        return self.chunkInfo[2]

    @axesOrder.setter
    def axesOrder(self, value):
        self._axesOrder = value

    @property
    def nMca(self):
        return self.chunkInfo[3]

    @nMca.setter
    def nMca(self, value):
        super(MaskedView, self.__class__).nMca.fset(self, value)

    @property
    def idxFull(self):
        idx = super(MaskedView, self).idxFull
        if self.masked:
            idx = list(idx)
            idx = self._idxFullMask(idx, self._mask)
            idx = tuple(idx)
        return idx

    @property
    def idxFullComplement(self):
        idx = super(MaskedView, self).idxFullComplement
        if self.masked:
            mcaAxis = self.mcaAxis
            for i in idx[mcaAxis]:
                ret = list(idx)
                ret = self._idxFullMask(ret, ~self._mask)
                ret[mcaAxis] = i
                yield tuple(ret)
        else:
            yield idx

    def _idxFullMask(self, idx, mask):
        axesOrder = self.axesOrder
        if isinstance(mask, (list, tuple)):
            maskIndex = mask
        else:
            maskIndex = mask.nonzero()
        for axis, ind in zip(axesOrder, maskIndex):
            idx[axis] = ind
        return idx

    def items(self, keyType='all'):
        """Yields (index(tuple), shape(tuple)), chunk(array))
        """
        nChan = self.nChan
        data = self._data
        chunkGenerator, chunkAxes, axesOrder, nMca = self.chunkInfo
        axesOrderSorted = tuple(sorted(axesOrder))
        masked = self.masked
        # chunkAxes: len == 1
        # axesOrder: len >= 1

        # Transpose so that chunkAxes are first after which we can reshape
        # the chunk to nMca x nChan and yield it
        if masked:
            # Chunks always have dimension 2
            lstAxis = intListIndexAxis(data.shape, axesOrder)
            if lstAxis == 0:
                transposeAxes = (0, 1)
            else:
                transposeAxes = (1, 0)
            h5pyMultiList = not self._isNdarray and len(axesOrder) > 1
        else:
            transposeAxes = axesOrderSorted + chunkAxes
            h5pyMultiList = False
        itransposeAxes = tuple(numpy.argsort(transposeAxes).tolist())

        # Yield key, value pairs:
        #  value: nMca x nChan chunk of buffer
        #  key: index applied to data and resulting shape
        #   keyType == 'all': including mcaAxis
        #   keyType == 'select': excluding mcaAxis
        post_copy = self._prepareAccess()
        buffer = self._buffer
        for idxChunk, idxShape, nMca in chunkGenerator:
            value = buffer[:nMca, :]
            if h5pyMultiList:
                h5pyMultiListGet(data, value, idxChunk, axesOrder)
            else:
                value[()] = numpy.transpose(data[idxChunk], transposeAxes)\
                                 .reshape(nMca, nChan)
            if keyType == 'select':
                if masked:
                    key = tuple(idxChunk[i] for i in axesOrderSorted),\
                          (nMca,)
                else:
                    key = tuple(idxChunk[i] for i in axesOrderSorted),\
                          tuple(idxShape[i] for i in axesOrderSorted)
            else:
                key = idxChunk, idxShape
            yield key, value
            if post_copy:
                if h5pyMultiList:
                    h5pyMultiListSet(data, value, idxChunk, axesOrder)
                else:
                    idxShape = tuple(idxShape[i] for i in transposeAxes)
                    data[idxChunk] = numpy.transpose(value.reshape(idxShape),
                                                     itransposeAxes)


class FullView(MaskedView):
    """
    View of MCA stack with MCA channel slice which allows iteration over chunks of spectra
    """

    def __init__(self, data, **kwargs):
        """
        :param array data: nD array (numpy.ndarray or h5py.Dataset)
        :param **kwargs: see MaskedView
        """
        super(FullView, self).__init__(data, mask=None, **kwargs)