1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
#!/usr/bin/env python
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2014 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import os
import sys
import numpy
import logging
import shutil
import re
import itertools
from PyMca5.PyMcaIO import EdfFile
from PyMca5.PyMcaIO import TiffIO
from PyMca5.PyMcaCore import NexusTools
try:
import h5py
except ImportError:
h5py = None
_logger = logging.getLogger(__name__)
class PyMcaBatchBuildOutput(object):
def __init__(self, inputdir=None, outputdir=None):
self.inputDir = inputdir
self.outputDir = outputdir
def buildOutput(self, inputdir=None, basename=None, outputdir=None, delete=None):
"""
:returns: 3 lists of merged filenames: .edf filenames, .dat filenames and .h5 filenames
"""
if inputdir is None:
inputdir = self.inputDir
if inputdir is None:
inputdir = os.getcwd()
if not os.path.isdir(inputdir):
return [], [], []
if outputdir is None:
outputdir = self.outputDir
if outputdir is None:
outputdir = inputdir
if delete is None:
if outputdir == inputdir:
delete = True
_logger.debug("delete option = %s", delete)
allfiles = os.listdir(inputdir)
partialList = {'edf': {'ext': '.edf', 'list': []},
'tif': {'ext': '.tif', 'list': []},
'dat': {'ext': '.dat', 'list': []},
'csv': {'ext': '.csv', 'list': []},
'h5': {'ext': '.h5', 'list': []},
'cfg': {'ext': '.cfg', 'list': []},
'conc': {'ext': '_concentrations.txt', 'list': []}
}
for filepath in allfiles:
filename = os.path.basename(filepath)
for typ, value in partialList.items():
if basename:
if not filename.startswith(basename):
continue
if filename.endswith('000000_partial' + value['ext']):
value['list'].append(filename)
outListH5 = self._merge(inputdir, outputdir, delete,
partialList['h5']['list'], self._mergeH5)
outListEdf = self._merge(inputdir, outputdir, delete,
partialList['edf']['list'], self._mergeEdf)
outListDat = self._merge(inputdir, outputdir, delete,
partialList['dat']['list'], self._mergeDat)
self._merge(inputdir, outputdir, delete,
partialList['tif']['list'], self._mergeTif)
self._merge(inputdir, outputdir, delete,
partialList['csv']['list'], self._mergeCsv)
self._merge(inputdir, outputdir, delete,
partialList['conc']['list'], self._mergeConcTxt)
self._merge(inputdir, outputdir, delete,
partialList['cfg']['list'], self._mergeCfg)
return outListEdf, outListDat, outListH5
def _merge(self, inputdir, outputdir, delete, partialList, func):
"""
The images to be merged already have the final size but are filled with NaN's
"""
outList = []
for filename in partialList:
parts = self.getPartialFileList(os.path.join(inputdir, filename))
outfilename = parts[0].replace("_000000_partial", "")
_logger.debug("Merging %s (%d parts)", outfilename, len(parts))
outfilename = os.path.join(outputdir, outfilename)
try:
func(parts, outfilename)
except:
_logger.error("Error merging %s\n: %s", outfilename, sys.exc_info()[1])
continue
outList.append(outfilename)
if delete:
for filename in parts:
try:
os.remove(filename)
except:
_logger.warning("Cannot delete file %s" % filename)
return outList
def _mergeH5(self, parts, outfilename):
shutil.copy(parts[0], outfilename)
with h5py.File(outfilename, mode='a') as fout:
for entry in NexusTools.getNXClassGroups(fout, '/', [u'NXentry']):
for process in NexusTools.getNXClassGroups(fout, entry.name, [u'NXprocess']):
for results in NexusTools.getNXClassGroups(fout, process.name, [u'NXcollection']):
for dataout in NexusTools.getNXClassGroups(fout, results.name, [u'NXdata']):
for part in parts[1:]:
with h5py.File(part, mode='r') as fin:
try:
datain = fin[dataout.name]
except KeyError:
_logger.error('%s does not have %s', part, repr(dataout.name))
continue
for datasetname in dataout:
self._fillPartial(dataout[datasetname],
datain[datasetname],
maxdims=2)
def _mergeCfg(self, parts, outfilename):
# They should be all the same so pick the first one
shutil.copy(parts[0], outfilename)
return outfilename
def _mergeEdf(self, parts, outfilename):
for i, edfname in enumerate(parts):
edf = EdfFile.EdfFile(edfname, access='rb', fastedf=0)
nImages = edf.GetNumImages()
if i == 0:
images = [edf.GetData(j).copy() for j in range(nImages)]
headers = [{'Title': edf.GetHeader(j)['Title']}
for j in range(nImages)]
else:
headersi = [{'Title': edf.GetHeader(j)['Title']}
for j in range(nImages)]
for header, img in zip(headers, images):
k = headersi.index(header)
self._fillPartial(img, edf.GetData(k))
del edf
if os.path.exists(outfilename):
_logger.debug("Output file already exists, trying to delete it")
os.remove(outfilename)
edfout = EdfFile.EdfFile(outfilename, access="ab")
for i, (img, header) in enumerate(zip(images, headers)):
edfout.WriteImage(header, img, Append=i > 0)
del edfout
def _mergeTif(self, parts, outfilename):
for i, tifname in enumerate(parts):
tif = TiffIO.TiffIO(tifname, mode='rb')
nImages = tif.getNumberOfImages()
if i == 0:
images = [tif.getData(j).copy() for j in range(nImages)]
headers = [{'Title': tif.getInfo(j)['info']['Title']}
for j in range(nImages)]
else:
headersi = [{'Title': tif.getInfo(j)['info']['Title']}
for j in range(nImages)]
for header, img in zip(headers, images):
k = headersi.index(header)
self._fillPartial(img, tif.getData(k))
del tif
if os.path.exists(outfilename):
_logger.debug("Output file already exists, trying to delete it")
os.remove(outfilename)
for i, (img, header) in enumerate(zip(images, headers)):
# TODO: there must be a better way
if i == 0:
tifout = TiffIO.TiffIO(outfilename, mode="wb+")
elif i == 1:
del tifout
tifout = TiffIO.TiffIO(outfilename, mode="rb+")
tifout.writeImage(img, info=header)
del tifout
def _fillPartial(self, output, input, maxdims=None):
if output.shape != input.shape:
_logger.error("Cannot merge array's with different shapes")
return
if maxdims is None:
maxdims = output.ndim
if output.ndim > maxdims:
# This is meant to preserve memory when copying
# h5py datasets
idx = [slice(None)]*output.ndim
shape = output.shape
iterdims = sorted(numpy.argsort(shape)[:-maxdims])
iterlst = [list(range(shape[i])) for i in iterdims]
for iteridx in itertools.product(*iterlst):
for axis, i in zip(iterdims, iteridx):
idx[axis] = i
idxtpl = tuple(idx)
bufferin = input[idxtpl]
mask = ~numpy.isnan(bufferin)
if mask.any():
bufferout = output[idxtpl]
bufferout[mask] = bufferin[mask]
output[idxtpl] = bufferout
else:
mask = ~numpy.isnan(input)
if mask.any():
output[mask] = input[mask]
def _mergeDat(self, parts, outfilename):
self._mergeAscii(parts, outfilename, ' ')
def _mergeCsv(self, parts, outfilename):
self._mergeAscii(parts, outfilename, ';')
def _mergeAscii(self, parts, outfilename, separator):
first = True
for specname in parts:
f = open(specname)
lines = f.readlines()
f.close()
j = 1
while not len(lines[-j].replace("\n", "")):
j += 1
if first:
first = False
labels = lines[0].replace("\n", "").split(separator)
nlabels = len(labels)
nrows = len(lines) - j
data = numpy.zeros((nrows, nlabels), numpy.double)
inputdata = numpy.zeros((nrows, nlabels), numpy.double)
colSelect = list(range(nlabels))
else:
labelsi = lines[0].replace("\n", "").split(separator)
colSelect = [labels.index(label) for label in labelsi]
for i in range(nrows):
inputdata[i, colSelect] = [float(x) for x in lines[i+1].split(separator)]
self._fillPartial(data, inputdata)
if os.path.exists(outfilename):
os.remove(outfilename)
outfile = open(outfilename, 'w+')
outfile.write("%s\n" % separator.join(labels))
for row in range(nrows):
line = ""
for col in range(nlabels):
if col == 0:
line += "%d" % inputdata[row, col]
elif col == 1:
line += separator + "%d" % inputdata[row, col]
else:
line += separator + "%g" % data[row, col]
outfile.write("%s\n" % line)
outfile.write("\n")
outfile.close()
def _mergeConcTxt(self, parts, outfilename):
for i, infilename in enumerate(parts):
ffile = open(infilename, 'rb')
if i == 0:
if os.path.exists(outfilename):
os.remove(outfilename)
outfile = open(outfilename, 'wb')
lines = ffile.readlines()
for line in lines:
outfile.write(line)
ffile.close()
outfile.close()
@staticmethod
def getPartialFileList(filename, begin=None, end=None, skip=None):
# Decempose filename, for example "/tmp/base_000000_partial.ext"
name, ext = os.path.splitext(os.path.basename(filename))
m = re.search(r"^(.+?)(\d+)([^\d]+)$", name)
if not m:
return [filename]
prefix, number, suffix = m.groups()
prefix = os.path.join(os.path.dirname(filename), prefix)
suffix += ext
# Prepare iteration over "/tmp/base_{:d}_partial.ext"
fformat = prefix + "{{:0{}d}}".format(len(number)) + suffix
if begin is None:
i = 0
while not os.path.exists(fformat.format(i)):
i += 1
else:
i = begin
if not skip:
skip = []
# Find all "/tmp/base_{:d}_partial.ext"
filelist = []
while os.path.exists(fformat.format(i)) or i in skip:
if i not in skip:
filelist.append(fformat.format(i))
i += 1
if end is not None:
if i > end:
break
return filelist
if __name__ == "__main__":
import sys
if len(sys.argv) < 2:
print("Usage:")
print("python PyMcaBatchBuildOutput.py directory")
sys.exit(0)
directory = sys.argv[1]
w = PyMcaBatchBuildOutput(directory)
w.buildOutput()
"""
allfiles = os.listdir(directory)
edflist = []
datlist = []
for filename in allfiles:
if filename.endswith('000000_partial.edf'):edflist.append(filename)
elif filename.endswith('000000_partial.dat'):datlist.append(filename)
for filename in edflist:
print w.getPartialFileList(os.path.join(directory, filename))
"""
|