1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2022 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """
Module to calculate a set of ROIs on a stack of data.
"""
import os
import numpy
import logging
import copy
from PyMca5.PyMcaIO import ConfigDict
from PyMca5.PyMcaIO.OutputBuffer import OutputBuffer as OutputBufferBase
from PyMca5.PyMcaCore import McaStackView
_logger = logging.getLogger(__name__)
class OutputBuffer(OutputBufferBase):
def __init__(self, saveResiduals=False, saveFit=False, saveData=False,
diagnostics=False, saveFOM=False, **kwargs):
super(OutputBuffer, self).__init__(**kwargs)
self.fileProcessDefault = 'roi_sum'
class StackROIBatch(object):
def __init__(self):
self.config = ConfigDict.ConfigDict()
def setConfiguration(self, configuration):
self.config = ConfigDict.ConfigDict()
self.config.update(configuration)
def getConfiguration(self):
return copy.deepcopy(self.config)
def setConfigurationFile(self, ffile):
configuration = ConfigDict.ConfigDict()
configuration.read(ffile)
self.setConfiguration(configuration)
def batchROIMultipleSpectra(self, x=None, y=None, configuration=None,
net=True, xAtMinMax=False, index=None,
xLabel=None, outbuffer=None, save=True,
**outbufferinitargs):
"""
This method performs the actual fit. The y keyword is the only mandatory input argument.
:param x: 1D array containing the x axis (usually the channels) of the spectra.
:param y: 3D array containing the data, usually [nrows, ncolumns, nchannels]
:param weight: 0 Means no weight, 1 Use an average weight, 2 Individual weights (slow)
:param net: 0 Means no subtraction, 1 Calculate
:param xAtMinMax: if True, calculate X at maximum and minimum Y. Default is false.
:param index: Index of dimension where to apply the ROIs.
:param xLabel: Type of ROI to be used.
:param outbuffer:
:param save: set to False to postpone saving the in-memory buffers
:return OutputBuffer:
"""
data, x, index = self._parseData(x=x, y=y, index=index)
roiList, config = self._prepareRoiList(configuration=configuration,
xLabel=xLabel)
# Calculation needs buffer for memory allocation (memory or H5)
if outbuffer is None:
outbuffer = OutputBuffer(**outbufferinitargs)
with outbuffer.Context(save=save):
outbuffer['configuration'] = config
self._extractRois(data, x, index,
roiList=roiList,
roiDict=config["ROI"]["roidict"],
outbuffer=outbuffer,
xAtMinMax=xAtMinMax)
return outbuffer
def _extractRois(self, data, x, mcaAxis, roiList=None, roiDict=None,
outbuffer=None, xAtMinMax=False):
nRois = len(roiList)
nRows = data.shape[0]
nColumns = data.shape[1]
if xAtMinMax:
roiShape = (nRois * 4, nRows, nColumns)
names = [None] * 4 * nRois
else:
roiShape = (nRois * 2, nRows, nColumns)
names = [None] * 2 * nRois
# Helper variables for roi calculation
idx = [None] * nRois # indices along axis=index for each ROI
xw = [None] * nRois # x-values for each ROI
iXMinList = [None] * nRois # min(xw) for each ROI
iXMaxList = [None] * nRois # max(xw) for each ROI
def idxraw(i): return i
def idxnet(i): return i + nRois
def idxmax(i): return i + 2 * nRois
def idxmin(i): return i + 3 * nRois
for j, roi in enumerate(roiList):
if roi == "ICR":
xw[j] = x
idx[j] = numpy.arange(len(x))
iXMinList[j] = idx[j][0]
iXMaxList[j] = idx[j][-1]
else:
roiFrom = roiDict[roi]["from"]
roiTo = roiDict[roi]["to"]
idx[j] = numpy.nonzero((roiFrom <= x) & (x <= roiTo))[0]
if len(idx[j]):
xw[j] = x[idx[j]]
iXMinList[j] = numpy.argmin(xw[j])
iXMaxList[j] = numpy.argmax(xw[j])
else:
xw[j] = None
names[idxraw(j)] = "ROI " + roi
names[idxnet(j)] = "ROI " + roi + " Net"
if xAtMinMax:
roiType = roiDict[roi]["type"]
names[idxmax(j)] = "ROI " + roi + (" %s at Max." % roiType)
names[idxmin(j)] = "ROI " + roi + (" %s at Min." % roiType)
# Allocate memory for result
roidtype = numpy.float64
results = outbuffer.allocateMemory('roisum',
shape=roiShape,
dtype=roidtype,
labels=names,
dataAttrs=None,
groupAttrs={'default': True},
memtype='ram')
# Allocate memory of partial result
nMca = 2, 'MB'
_logger.debug('Process spectra in chunks of {}'.format(nMca))
datastack = McaStackView.FullView(data, mcaAxis=mcaAxis, nMca=nMca)
for (resultidx, resultshape), chunk in datastack.items(keyType='select'):
for j, roi in enumerate(roiList):
# Calculate ROI sum
if xw[j] is None:
# no points in the ROI
rawSum = 0.0
netSum = 0.0
else:
roichunk = numpy.array(chunk[:, idx[j]], copy=False, dtype=numpy.float64)
rawSum = roichunk.sum(axis=1, dtype=numpy.float64)
deltaX = xw[j][iXMaxList[j]] - xw[j][iXMinList[j]]
left = roichunk[:, iXMinList[j]]
right = roichunk[:, iXMaxList[j]]
deltaY = right - left
if abs(deltaX) > 0.0:
slope = deltaY / float(deltaX)
background = left * len(xw[j]) + slope * \
(xw[j] - xw[j][iXMinList[j]]).sum(dtype=numpy.float64)
netSum = rawSum - background
else:
netSum = 0.0
rawSum = rawSum.reshape(resultshape)
netSum = netSum.reshape(resultshape)
results[idxraw(j)][resultidx] = rawSum # ROI sum
results[idxnet(j)][resultidx] = netSum # ROI sum minus linear background
# Calculate x-value of the minimum and maximum within the ROI
if xAtMinMax:
if xw[j] is None:
# what can be the Min and the Max when there is nothing in the ROI?
_logger.warning("No Min. Max for ROI <%s>. Empty ROI" % roi)
else:
maxImage = xw[j][numpy.argmax(roichunk, axis=1)]
results[idxmax(j)][resultidx] = maxImage.reshape(resultshape)
minImage = xw[j][numpy.argmin(roichunk, axis=1)]
results[idxmin(j)][resultidx] = minImage.reshape(resultshape)
def _parseData(self, x=None, y=None, index=None):
if y is None:
raise RuntimeError("y keyword argument is mandatory!")
if hasattr(y, "info") and hasattr(y, "data"):
data = y.data
mcaIndex = y.info.get("McaIndex", -1)
else:
data = y
mcaIndex = -1
if index is None:
index = mcaIndex
if index < 0:
index = len(data.shape) - 1
#workaround a problem with h5py
try:
if index in [0]:
testException = data[0:1]
else:
if len(data.shape) == 2:
testException = data[0:1, -1]
elif len(data.shape) == 3:
testException = data[0:1, 0:1, -1]
except AttributeError:
txt = "%s" % type(data)
if 'h5py' in txt:
_logger.info("Implementing h5py workaround")
import h5py
data = h5py.Dataset(data.id)
else:
raise
# only usual spectra case supported
if index != (len(data.shape) - 1):
raise IndexError("Only stacks of spectra supported")
if len(data.shape) != 3:
txt = "For the time being only "
txt += "three dimensional arrays supported"
raise NotImplementedError(txt)
if len(data.shape) != 3:
txt = "For the time being only "
txt += "three dimensional arrays supported"
raise NotImplementedError(txt)
# make sure to get x data
if x is None:
x = numpy.arange(data.shape[index]).astype(numpy.float32)
elif x.size != data.shape[index]:
raise NotImplementedError("All the spectra should share same X axis")
#data = numpy.transpose(data, (1,0,2))
return data, x, index
def _prepareRoiList(self, configuration=None, xLabel=None):
# read the current configuration
if configuration is not None:
self.setConfiguration(configuration)
config = self.getConfiguration()
# prepare roi list
roiList0 = config["ROI"]["roilist"]
if type(roiList0) not in [type([]), type((1,))]:
roiList0 = [roiList0]
# operate only on compatible ROIs
roiList = []
roiDict = config["ROI"]["roidict"]
for roi in roiList0:
roiType = roiDict[roi]["type"]
if xLabel is None:
roiList.append(roi)
elif roi.upper() == "ICR":
roiList.append(roi)
elif xLabel.lower() == roiType.lower():
roiList.append(roi)
else:
_logger.info("ROI <%s> ignored")
return roiList, config
def getFileListFromPattern(pattern, begin, end, increment=None):
if type(begin) == type(1):
begin = [begin]
if type(end) == type(1):
end = [end]
if len(begin) != len(end):
raise ValueError(\
"Begin list and end list do not have same length")
if increment is None:
increment = [1] * len(begin)
elif type(increment) == type(1):
increment = [increment]
if len(increment) != len(begin):
raise ValueError(\
"Increment list and begin list do not have same length")
fileList = []
if len(begin) == 1:
for j in range(begin[0], end[0] + increment[0], increment[0]):
fileList.append(pattern % (j))
elif len(begin) == 2:
for j in range(begin[0], end[0] + increment[0], increment[0]):
for k in range(begin[1], end[1] + increment[1], increment[1]):
fileList.append(pattern % (j, k))
elif len(begin) == 3:
raise ValueError("Cannot handle three indices yet.")
for j in range(begin[0], end[0] + increment[0], increment[0]):
for k in range(begin[1], end[1] + increment[1], increment[1]):
for l in range(begin[2], end[2] + increment[2], increment[2]):
fileList.append(pattern % (j, k, l))
else:
raise ValueError("Cannot handle more than three indices.")
return fileList
def prepareDataStack(fileList):
if (not os.path.exists(fileList[0])) and \
os.path.exists(fileList[0].split("::")[0]):
# odo convention to get a dataset form an HDF5
fname, dataPath = fileList[0].split("::")
# compared to the ROI imaging tool, this way of reading puts data
# into memory while with the ROI imaging tool, there is a check.
if 0:
import h5py
h5 = h5py.File(fname, "r")
dataStack = h5[dataPath][:]
h5.close()
else:
from PyMca5.PyMcaIO import HDF5Stack1D
# this way reads information associated to the dataset (if present)
if dataPath.startswith("/"):
pathItems = dataPath[1:].split("/")
else:
pathItems = dataPath.split("/")
if len(pathItems) > 1:
scanlist = ["/" + pathItems[0]]
selection = {"y":"/" + "/".join(pathItems[1:])}
else:
selection = {"y":dataPath}
scanlist = None
print(selection)
print("scanlist = ", scanlist)
dataStack = HDF5Stack1D.HDF5Stack1D([fname],
selection,
scanlist=scanlist)
else:
from PyMca5.PyMca import EDFStack
dataStack = EDFStack.EDFStack(fileList, dtype=numpy.float32)
return dataStack
def main():
import glob
import sys
import getopt
_logger.setLevel(logging.DEBUG)
options = ''
longoptions = ['cfg=', 'outdir=',
'tif=', 'edf=', 'csv=', 'h5=', 'dat=',
'filepattern=', 'begin=', 'end=', 'increment=',
'outroot=', 'outentry=', 'outprocess=',
'overwrite=', 'multipage=']
try:
opts, args = getopt.getopt(
sys.argv[1:],
options,
longoptions)
except:
_logger.error(sys.exc_info()[1])
sys.exit(1)
outputDir = None
outputRoot = ""
fileEntry = ""
fileProcess = ""
filepattern = None
begin = None
end = None
increment = None
tif = 0
edf = 0
csv = 0
h5 = 1
dat = 0
overwrite = 1
multipage = 0
for opt, arg in opts:
if opt in ('--cfg'):
configurationFile = arg
elif opt in '--begin':
if "," in arg:
begin = [int(x) for x in arg.split(",")]
else:
begin = [int(arg)]
elif opt in '--end':
if "," in arg:
end = [int(x) for x in arg.split(",")]
else:
end = int(arg)
elif opt in '--increment':
if "," in arg:
increment = [int(x) for x in arg.split(",")]
else:
increment = int(arg)
elif opt in '--filepattern':
filepattern = arg.replace('"', '')
filepattern = filepattern.replace("'", "")
elif opt in '--outdir':
outputDir = arg
elif opt == '--outroot':
outputRoot = arg
elif opt == '--outentry':
fileEntry = arg
elif opt == '--outprocess':
fileProcess = arg
elif opt in ('--tif', '--tiff'):
tif = int(arg)
elif opt == '--edf':
edf = int(arg)
elif opt == '--csv':
csv = int(arg)
elif opt == '--h5':
h5 = int(arg)
elif opt == '--dat':
dat = int(arg)
elif opt == '--overwrite':
overwrite = int(arg)
elif opt == '--multipage':
multipage = int(arg)
if filepattern is not None:
if (begin is None) or (end is None):
raise ValueError(
"A file pattern needs at least a set of begin and end indices")
if filepattern is not None:
fileList = getFileListFromPattern(filepattern, begin, end,
increment=increment)
else:
fileList = args
if len(fileList):
dataStack = prepareDataStack(fileList)
else:
print("OPTIONS:", longoptions)
sys.exit(0)
if outputDir is None:
print("RESULTS WILL NOT BE SAVED: No output directory specified")
worker = StackROIBatch()
worker.setConfigurationFile(configurationFile)
outbuffer = OutputBuffer(outputDir=outputDir,
outputRoot=outputRoot,
fileEntry=fileEntry,
fileProcess=fileProcess,
tif=tif, edf=edf, csv=csv,
h5=h5, dat=dat,
multipage=multipage,
overwrite=overwrite)
with outbuffer.saveContext():
worker.batchROIMultipleSpectra(y=dataStack,
outbuffer=outbuffer)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
main()
|