1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
# /*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2020 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
__author__ = "T. Vincent - ESRF Data Analysis"
__contact__ = "thomas.vincent@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """Convert data to a RGBA colormap."""
# import ######################################################################
import numpy as np
from . import ctools
# default colormaps ###########################################################
_CMAP_RED = np.zeros((256, 4), dtype=np.uint8)
_CMAP_RED[:, 0] = np.arange(256, dtype=np.uint8)
_CMAP_RED[:, 3] = 255
_CMAP_GREEN = np.zeros((256, 4), dtype=np.uint8)
_CMAP_GREEN[:, 1] = np.arange(256, dtype=np.uint8)
_CMAP_GREEN[:, 3] = 255
_CMAP_BLUE = np.zeros((256, 4), dtype=np.uint8)
_CMAP_BLUE[:, 2] = np.arange(256, dtype=np.uint8)
_CMAP_BLUE[:, 3] = 255
_CMAP_BLUE = np.zeros((256, 4), dtype=np.uint8)
_CMAP_BLUE[:, 2] = np.arange(256, dtype=np.uint8)
_CMAP_BLUE[:, 3] = 255
_CMAP_GRAY = np.indices((256, 4), dtype=np.uint8)[0]
_CMAP_GRAY[:, 3] = 255
_CMAP_REVERSED_GRAY = 255 - np.indices((256, 4), dtype=np.uint8)[0]
_CMAP_REVERSED_GRAY[:, 3] = 255
_INDICES = np.arange(256, dtype=np.int)
_CMAP_TEMPERATURE = np.asarray(np.dstack((
np.interp(_INDICES, (128, 192), (0, 255)),
np.interp(_INDICES, (0, 64, 192, 255), (0, 255, 255, 0)),
np.interp(_INDICES, (64, 128), (255, 0)),
np.array((255,) * 256)))[0], dtype=np.uint8, order='C')
"""
red: For index 128->192, red is 0->255
green: For index 0->64, green is 0->255 and for 192->255, green is 255->0
blue: For index 64->128, blue is 255->0
"""
COLORMAPS = {
# Sequential
'red': _CMAP_RED,
'green': _CMAP_GREEN,
'blue': _CMAP_BLUE,
'gray': _CMAP_GRAY,
'reversed gray': _CMAP_REVERSED_GRAY,
# Rainbow
'temperature': _CMAP_TEMPERATURE,
}
"""Dictionary of default colormaps."""
# colormap ####################################################################
def applyColormap(data, colormap='gray', norm='linear', bounds=None):
"""Convert data to a RGBA pixmap using a colormap.
The returned pixmap has the same shape as data plus one dimension of 4.
:param numpy.ndarray data: The data to convert to a pixmap.
Any dimension is supported.
:param colormap: Either the name or the RGBA colors of the colormap to use.
:type colormap: Either str or numpy.ndarray with shape=(N, 4)
and dtype=numpy.uint8.
:param str norm: The normalization to use. Either 'linear' (the default)
or 'log' for log10 normalization.
:param bounds: The start and end value used to apply the colormap
or None (the default) to use auto-scale.
As is, start value must be <= end value.
:type bounds: tuple of two floats (startValue, endValue) or None.
:returns: The RGBA pixmap and the used start and end value.
:rtype: (numpy.ndarray with dtype=numpy.uint8, (float, float))
"""
if not isinstance(colormap, np.ndarray):
try:
colormap = COLORMAPS[colormap]
except KeyError:
raise RuntimeError("Invalid colormap: %s" % colormap)
isLog10 = norm.startswith('log')
if bounds is None:
start, end = None, None
else:
start, end = bounds
return ctools.dataToRGBAColormap(data, colormap, start, end, isLog10, None)
# demo ########################################################################
if __name__ == "__main__":
data = np.arange(1024 * 1024.)
data.shape = 1024, -1
for colormap in COLORMAPS:
pixmap, _ = applyColormap(data, colormap)
filename = 'demoColormap_%s.ppm' % colormap
print('Write generated RGB image to: %s' % filename)
with open(filename, 'w') as f:
f.write('P6\n%d %d\n255\n' % (pixmap.shape[1], pixmap.shape[0]))
f.write(pixmap[:, :, 0:3].tobytes())
|