1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
|
# /*#########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2015 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
__author__ = "T. Vincent - ESRF Data Analysis"
__contact__ = "thomas.vincent@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """
This module provides a class to render 2D array as a colormap or RGB(A) image
"""
# import ######################################################################
from .gl import * # noqa
import math
from .GLSupport import mat4Translate, mat4Scale, FLOAT32_MINPOS
from .GLProgram import GLProgram
from .GLTexture import Image
try:
from ....ctools import minMax
except ImportError:
from PyMca5.PyMcaGraph.ctools import minMax
# colormap ####################################################################
class _GLPlotData2D(object):
def __init__(self, data, origin, scale):
self.data = data
assert len(origin) == 2
self.origin = tuple(origin)
assert len(scale) == 2
self.scale = tuple(scale)
def pick(self, x, y):
if (self.xMin <= x and x <= self.xMax and
self.yMin <= y and y <= self.yMax):
ox, oy = self.origin
sx, sy = self.scale
col = int((x - ox) / sx)
row = int((y - oy) / sy)
return col, row
else:
return None
@property
def xMin(self):
ox, sx = self.origin[0], self.scale[0]
return ox if sx >= 0. else ox + sx * self.data.shape[1]
@property
def yMin(self):
oy, sy = self.origin[1], self.scale[1]
return oy if sy >= 0. else oy + sy * self.data.shape[0]
@property
def xMax(self):
ox, sx = self.origin[0], self.scale[0]
return ox + sx * self.data.shape[1] if sx >= 0. else ox
@property
def yMax(self):
oy, sy = self.origin[1], self.scale[1]
return oy + sy * self.data.shape[0] if sy >= 0. else oy
def discard(self):
pass
def prepare(self):
pass
def render(self, matrix):
pass
class GLPlotColormap(_GLPlotData2D):
_SHADERS = {
'linear': {
'vertex': """
#version 120
uniform mat4 matrix;
attribute vec2 texCoords;
attribute vec2 position;
varying vec2 coords;
void main(void) {
coords = texCoords;
gl_Position = matrix * vec4(position, 0.0, 1.0);
}
""",
'fragTransform': """
vec2 textureCoords(void) {
return coords;
}
"""},
'log': {
'vertex': """
#version 120
attribute vec2 position;
uniform mat4 matrix;
uniform mat4 matOffset;
uniform bvec2 isLog;
varying vec2 coords;
const float oneOverLog10 = 0.43429448190325176;
void main(void) {
vec4 dataPos = matOffset * vec4(position, 0.0, 1.0);
if (isLog.x) {
dataPos.x = oneOverLog10 * log(dataPos.x);
}
if (isLog.y) {
dataPos.y = oneOverLog10 * log(dataPos.y);
}
coords = dataPos.xy;
gl_Position = matrix * dataPos;
}
""",
'fragTransform': """
uniform bvec2 isLog;
uniform struct {
vec2 oneOverRange;
vec2 originOverRange;
} bounds;
vec2 textureCoords(void) {
vec2 pos = coords;
if (isLog.x) {
pos.x = pow(10., coords.x);
}
if (isLog.y) {
pos.y = pow(10., coords.y);
}
return pos * bounds.oneOverRange - bounds.originOverRange;
// TODO texture coords in range different from [0, 1]
}
"""},
'fragment': """
#version 120
#define CMAP_GRAY 0
#define CMAP_R_GRAY 1
#define CMAP_RED 2
#define CMAP_GREEN 3
#define CMAP_BLUE 4
#define CMAP_TEMP 5
uniform sampler2D data;
uniform struct {
int id;
bool isLog;
float min;
float oneOverRange;
} cmap;
varying vec2 coords;
%s
vec4 cmapGray(float normValue) {
return vec4(normValue, normValue, normValue, 1.);
}
vec4 cmapReversedGray(float normValue) {
float invValue = 1. - normValue;
return vec4(invValue, invValue, invValue, 1.);
}
vec4 cmapRed(float normValue) {
return vec4(normValue, 0., 0., 1.);
}
vec4 cmapGreen(float normValue) {
return vec4(0., normValue, 0., 1.);
}
vec4 cmapBlue(float normValue) {
return vec4(0., 0., normValue, 1.);
}
//red: 0.5->0.75: 0->1
//green: 0.->0.25: 0->1; 0.75->1.: 1->0
//blue: 0.25->0.5: 1->0
vec4 cmapTemperature(float normValue) {
float red = clamp(4. * normValue - 2., 0., 1.);
float green = 1. - clamp(4. * abs(normValue - 0.5) - 1., 0., 1.);
float blue = 1. - clamp(4. * normValue - 1., 0., 1.);
return vec4(red, green, blue, 1.);
}
const float oneOverLog10 = 0.43429448190325176;
void main(void) {
float value = texture2D(data, textureCoords()).r;
if (cmap.isLog) {
if (value > 0.) {
value = clamp(cmap.oneOverRange *
(oneOverLog10 * log(value) - cmap.min),
0., 1.);
} else {
value = 0.;
}
} else { /*Linear mapping*/
value = clamp(cmap.oneOverRange * (value - cmap.min), 0., 1.);
}
if (cmap.id == CMAP_GRAY) {
gl_FragColor = cmapGray(value);
} else if (cmap.id == CMAP_R_GRAY) {
gl_FragColor = cmapReversedGray(value);
} else if (cmap.id == CMAP_RED) {
gl_FragColor = cmapRed(value);
} else if (cmap.id == CMAP_GREEN) {
gl_FragColor = cmapGreen(value);
} else if (cmap.id == CMAP_BLUE) {
gl_FragColor = cmapBlue(value);
} else if (cmap.id == CMAP_TEMP) {
gl_FragColor = cmapTemperature(value);
}
}
"""
}
_SHADER_CMAP_IDS = {
'gray': 0,
'reversed gray': 1,
'red': 2,
'green': 3,
'blue': 4,
'temperature': 5
}
COLORMAPS = tuple(_SHADER_CMAP_IDS.keys())
_DATA_TEX_UNIT = 0
_INTERNAL_FORMATS = {
np.dtype(np.float32): GL_R32F,
# Use normalized integer for unsigned int formats
np.dtype(np.uint16): GL_R16,
np.dtype(np.uint8): GL_R8,
}
_linearProgram = GLProgram(_SHADERS['linear']['vertex'],
_SHADERS['fragment'] %
_SHADERS['linear']['fragTransform'])
_logProgram = GLProgram(_SHADERS['log']['vertex'],
_SHADERS['fragment'] %
_SHADERS['log']['fragTransform'])
def __init__(self, data, origin, scale,
colormap, cmapIsLog=False, cmapRange=None):
"""Create a 2D colormap
:param data: The 2D scalar data array to display
:type data: numpy.ndarray with 2 dimensions (dtype=numpy.float32)
:param origin: (x, y) coordinates of the origin of the data array
:type origin: 2-tuple of floats.
:param scale: (sx, sy) scale factors of the data array.
This is the size of a data pixel in plot data space.
:type scale: 2-tuple of floats.
:param str colormap: Name of the colormap to use
TODO: Accept a 1D scalar array as the colormap
:param bool cmapIsLog: If True, uses log10 of the data value
:param cmapRange: The range of colormap or None for autoscale colormap
For logarithmic colormap, the range is in the untransformed data
TODO: check consistency with matplotlib
:type cmapRange: (float, float) or None
"""
assert data.dtype in self._INTERNAL_FORMATS
super(GLPlotColormap, self).__init__(data, origin, scale)
self.colormap = colormap
self.cmapIsLog = cmapIsLog
self._cmapRange = None # User-provided range info
self._cmapRangeCache = None # Store extra data for range
self.cmapRange = cmapRange # Update _cmapRange
self._textureIsDirty = False
def __del__(self):
self.discard()
def discard(self):
if hasattr(self, '_texture'):
self._texture.discard()
del self._texture
self._textureIsDirty = False
@property
def cmapRange(self):
if self._cmapRange is None: # Auto-scale mode
if self._cmapRangeCache is None:
# Build data , positive ranges
min_, minPos, max_ = minMax(self.data, minPositive=True)
maxPos = max_ if max_ > 0. else 1.
if minPos is None:
minPos = maxPos
self._cmapRangeCache = {'range': (min_, max_),
'pos': (minPos, maxPos)}
return self._cmapRangeCache['pos' if self.cmapIsLog else 'range']
else:
if not self.cmapIsLog:
return self._cmapRange # Return range as is
else:
if self._cmapRangeCache is None:
# Build a strictly positive range from cmapRange
min_, max_ = self._cmapRange
if min_ > 0. and max_ > 0.:
minPos, maxPos = min_, max_
else:
dataMin, minPos, dataMax = minMax(self.data,
minPositive=True)
if max_ > 0.:
maxPos = max_
elif dataMax > 0.:
maxPos = dataMax
else:
maxPos = 1. # Arbitrary fallback
if minPos is None:
minPos = maxPos
self._cmapRangeCache = minPos, maxPos
return self._cmapRangeCache # Strictly positive range
@cmapRange.setter
def cmapRange(self, cmapRange):
self._cmapRangeCache = None
if cmapRange is None:
self._cmapRange = None
else:
assert len(cmapRange) == 2
assert cmapRange[0] <= cmapRange[1]
self._cmapRange = tuple(cmapRange)
def updateData(self, data):
assert data.dtype in self._INTERNAL_FORMATS
oldData = self.data
self.data = data
self._cmapRangeCache = None
if hasattr(self, '_texture'):
if (self.data.shape != oldData.shape or
self.data.dtype != oldData.dtype):
self.discard()
else:
self._textureIsDirty = True
def prepare(self):
if not hasattr(self, '_texture'):
internalFormat = self._INTERNAL_FORMATS[self.data.dtype]
height, width = self.data.shape
self._texture = Image(internalFormat, width, height,
format_=GL_RED,
type_=numpyToGLType(self.data.dtype),
data=self.data,
texUnit=self._DATA_TEX_UNIT)
elif self._textureIsDirty:
self._textureIsDirty = True
self._texture.updateAll(format_=GL_RED,
type_=numpyToGLType(self.data.dtype),
data=self.data)
def _setCMap(self, prog):
dataMin, dataMax = self.cmapRange # If log, it is stricly positive
if self.data.dtype in (np.uint16, np.uint8):
# Using unsigned int as normalized integer in OpenGL
# So normalize range
maxInt = float(np.iinfo(self.data.dtype).max)
dataMin, dataMax = dataMin / maxInt, dataMax / maxInt
if self.cmapIsLog:
dataMin = math.log10(dataMin)
dataMax = math.log10(dataMax)
glUniform1i(prog.uniforms['cmap.id'],
self._SHADER_CMAP_IDS[self.colormap])
glUniform1i(prog.uniforms['cmap.isLog'], self.cmapIsLog)
glUniform1f(prog.uniforms['cmap.min'], dataMin)
if dataMax > dataMin:
oneOverRange = 1. / (dataMax - dataMin)
else:
oneOverRange = 0. # Fall-back
glUniform1f(prog.uniforms['cmap.oneOverRange'], oneOverRange)
def _renderLinear(self, matrix):
self.prepare()
prog = self._linearProgram
prog.use()
glUniform1i(prog.uniforms['data'], self._DATA_TEX_UNIT)
mat = matrix * mat4Translate(*self.origin) * mat4Scale(*self.scale)
glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, mat)
self._setCMap(prog)
self._texture.render(prog.attributes['position'],
prog.attributes['texCoords'],
self._DATA_TEX_UNIT)
def _renderLog10(self, matrix, isXLog, isYLog):
xMin, yMin = self.xMin, self.yMin
if ((isXLog and xMin < FLOAT32_MINPOS) or
(isYLog and yMin < FLOAT32_MINPOS)):
# Do not render images that are partly or totally <= 0
return
self.prepare()
prog = self._logProgram
prog.use()
ox, oy = self.origin
glUniform1i(prog.uniforms['data'], self._DATA_TEX_UNIT)
glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matrix)
mat = mat4Translate(ox, oy) * mat4Scale(*self.scale)
glUniformMatrix4fv(prog.uniforms['matOffset'], 1, GL_TRUE, mat)
glUniform2i(prog.uniforms['isLog'], isXLog, isYLog)
ex = ox + self.scale[0] * self.data.shape[1]
ey = oy + self.scale[1] * self.data.shape[0]
xOneOverRange = 1. / (ex - ox)
yOneOverRange = 1. / (ey - oy)
glUniform2f(prog.uniforms['bounds.originOverRange'],
ox * xOneOverRange, oy * yOneOverRange)
glUniform2f(prog.uniforms['bounds.oneOverRange'],
xOneOverRange, yOneOverRange)
self._setCMap(prog)
try:
tiles = self._texture.tiles
except AttributeError:
raise RuntimeError("No texture, discard has already been called")
if len(tiles) > 1:
raise NotImplementedError(
"Image over multiple textures not supported with log scale")
texture, vertices, info = tiles[0]
texture.bind(self._DATA_TEX_UNIT)
posAttrib = prog.attributes['position']
stride = vertices.shape[-1] * vertices.itemsize
glEnableVertexAttribArray(posAttrib)
glVertexAttribPointer(posAttrib,
2,
GL_FLOAT,
GL_FALSE,
stride, vertices)
glDrawArrays(GL_TRIANGLE_STRIP, 0, len(vertices))
def render(self, matrix, isXLog, isYLog):
if any((isXLog, isYLog)):
self._renderLog10(matrix, isXLog, isYLog)
else:
self._renderLinear(matrix)
# image #######################################################################
class GLPlotRGBAImage(_GLPlotData2D):
_SHADERS = {
'linear': {
'vertex': """
#version 120
attribute vec2 position;
attribute vec2 texCoords;
uniform mat4 matrix;
varying vec2 coords;
void main(void) {
gl_Position = matrix * vec4(position, 0.0, 1.0);
coords = texCoords;
}
""",
'fragment': """
#version 120
uniform sampler2D tex;
varying vec2 coords;
void main(void) {
gl_FragColor = texture2D(tex, coords);
}
"""},
'log': {
'vertex': """
#version 120
attribute vec2 position;
uniform mat4 matrix;
uniform mat4 matOffset;
uniform bvec2 isLog;
varying vec2 coords;
const float oneOverLog10 = 0.43429448190325176;
void main(void) {
vec4 dataPos = matOffset * vec4(position, 0.0, 1.0);
if (isLog.x) {
dataPos.x = oneOverLog10 * log(dataPos.x);
}
if (isLog.y) {
dataPos.y = oneOverLog10 * log(dataPos.y);
}
coords = dataPos.xy;
gl_Position = matrix * dataPos;
}
""",
'fragment': """
#version 120
uniform sampler2D tex;
uniform bvec2 isLog;
uniform struct {
vec2 oneOverRange;
vec2 originOverRange;
} bounds;
varying vec2 coords;
vec2 textureCoords(void) {
vec2 pos = coords;
if (isLog.x) {
pos.x = pow(10., coords.x);
}
if (isLog.y) {
pos.y = pow(10., coords.y);
}
return pos * bounds.oneOverRange - bounds.originOverRange;
// TODO texture coords in range different from [0, 1]
}
void main(void) {
gl_FragColor = texture2D(tex, textureCoords());
}
"""}
}
_DATA_TEX_UNIT = 0
_SUPPORTED_DTYPES = (np.dtype(np.float32), np.dtype(np.uint8))
_linearProgram = GLProgram(_SHADERS['linear']['vertex'],
_SHADERS['linear']['fragment'])
_logProgram = GLProgram(_SHADERS['log']['vertex'],
_SHADERS['log']['fragment'])
def __init__(self, data, origin, scale):
"""Create a 2D RGB(A) image from data
:param data: The 2D image data array to display
:type data: numpy.ndarray with 3 dimensions
(dtype=numpy.uint8 or numpy.float32)
:param origin: (x, y) coordinates of the origin of the data array
:type origin: 2-tuple of floats.
:param scale: (sx, sy) scale factors of the data array.
This is the size of a data pixel in plot data space.
:type scale: 2-tuple of floats.
"""
assert data.dtype in self._SUPPORTED_DTYPES
super(GLPlotRGBAImage, self).__init__(data, origin, scale)
self._textureIsDirty = False
def __del__(self):
self.discard()
def discard(self):
if hasattr(self, '_texture'):
self._texture.discard()
del self._texture
self._textureIsDirty = False
def updateData(self, data):
assert data.dtype in self._SUPPORTED_DTYPES
oldData = self.data
self.data = data
if hasattr(self, '_texture'):
if self.data.shape != oldData.shape:
self.discard()
else:
self._textureIsDirty = True
def prepare(self):
if not hasattr(self, '_texture'):
height, width, depth = self.data.shape
format_ = GL_RGBA if depth == 4 else GL_RGB
type_ = numpyToGLType(self.data.dtype)
self._texture = Image(format_, width, height,
format_=format_, type_=type_,
data=self.data,
texUnit=self._DATA_TEX_UNIT)
elif self._textureIsDirty:
self._textureIsDirty = False
# We should check that internal format is the same
format_ = GL_RGBA if self.data.shape[2] == 4 else GL_RGB
type_ = numpyToGLType(self.data.dtype)
self._texture.updateAll(format_=format_, type_=type_,
data=self.data)
def _renderLinear(self, matrix):
self.prepare()
prog = self._linearProgram
prog.use()
glUniform1i(prog.uniforms['tex'], self._DATA_TEX_UNIT)
mat = matrix * mat4Translate(*self.origin) * mat4Scale(*self.scale)
glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, mat)
self._texture.render(prog.attributes['position'],
prog.attributes['texCoords'],
self._DATA_TEX_UNIT)
def _renderLog(self, matrix, isXLog, isYLog):
self.prepare()
prog = self._logProgram
prog.use()
ox, oy = self.origin
glUniform1i(prog.uniforms['tex'], self._DATA_TEX_UNIT)
glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matrix)
mat = mat4Translate(ox, oy) * mat4Scale(*self.scale)
glUniformMatrix4fv(prog.uniforms['matOffset'], 1, GL_TRUE, mat)
glUniform2i(prog.uniforms['isLog'], isXLog, isYLog)
ex = ox + self.scale[0] * self.data.shape[1]
ey = oy + self.scale[1] * self.data.shape[0]
xOneOverRange = 1. / (ex - ox)
yOneOverRange = 1. / (ey - oy)
glUniform2f(prog.uniforms['bounds.originOverRange'],
ox * xOneOverRange, oy * yOneOverRange)
glUniform2f(prog.uniforms['bounds.oneOverRange'],
xOneOverRange, yOneOverRange)
try:
tiles = self._texture.tiles
except AttributeError:
raise RuntimeError("No texture, discard has already been called")
if len(tiles) > 1:
raise NotImplementedError(
"Image over multiple textures not supported with log scale")
texture, vertices, info = tiles[0]
texture.bind(self._DATA_TEX_UNIT)
posAttrib = prog.attributes['position']
stride = vertices.shape[-1] * vertices.itemsize
glEnableVertexAttribArray(posAttrib)
glVertexAttribPointer(posAttrib,
2,
GL_FLOAT,
GL_FALSE,
stride, vertices)
glDrawArrays(GL_TRIANGLE_STRIP, 0, len(vertices))
def render(self, matrix, isXLog, isYLog):
if any((isXLog, isYLog)):
self._renderLog(matrix, isXLog, isYLog)
else:
self._renderLinear(matrix)
|