1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
#/*##########################################################################
# Copyright (C) 2004-2015 V.A. Sole, European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import numpy
from PyMca5.PyMcaGui import PyMcaQt as qt
if hasattr(qt, 'QStringList'):
MyQVariant = qt.QVariant
else:
def MyQVariant(x=None):
return x
class NumpyArrayTableModel(qt.QAbstractTableModel):
def __init__(self, parent=None, narray=None, fmt="%g", perspective=0):
qt.QAbstractTableModel.__init__(self, parent)
if narray is None:
narray = numpy.array([])
self._array = narray
self._format = fmt
self._index = 0
self.assignDataFunction(perspective)
def rowCount(self, parent=None):
return self._rowCount(parent)
def columnCount(self, parent=None):
return self._columnCount(parent)
def data(self, index, role=qt.Qt.DisplayRole):
return self._data(index, role)
def _rowCount1D(self, parent=None):
return 1
def _columnCount1D(self, parent=None):
return self._array.shape[0]
def _data1D(self, index, role=qt.Qt.DisplayRole):
if index.isValid():
if role == qt.Qt.DisplayRole:
# row = 0
col = index.column()
return MyQVariant(self._format % self._array[col])
return MyQVariant()
def _rowCount2D(self, parent=None):
return self._array.shape[0]
def _columnCount2D(self, parent=None):
return self._array.shape[1]
def _data2D(self, index, role=qt.Qt.DisplayRole):
if index.isValid():
if role == qt.Qt.DisplayRole:
row = index.row()
col = index.column()
return MyQVariant(self._format % self._array[row, col])
return MyQVariant()
def _rowCountND(self, parent=None):
return self._array.shape[-2]
def _columnCountND(self, parent=None):
return self._array.shape[-1]
def _dataND(self, index, role=qt.Qt.DisplayRole):
if index.isValid():
if role == qt.Qt.DisplayRole:
row = index.row()
col = index.column()
actualSelection = tuple(self._index + [row, col])
return MyQVariant(self._format % self._array[actualSelection])
return MyQVariant()
def _rowCount3DIndex0(self, parent=None):
return self._array.shape[1]
def _columnCount3DIndex0(self, parent=None):
return self._array.shape[2]
def _rowCount3DIndex1(self, parent=None):
return self._array.shape[0]
def _columnCount3DIndex1(self, parent=None):
return self._array.shape[2]
def _rowCount3DIndex2(self, parent=None):
return self._array.shape[0]
def _columnCount3DIndex2(self, parent=None):
return self._array.shape[1]
def _data3DIndex0(self, index, role=qt.Qt.DisplayRole):
if index.isValid():
if role == qt.Qt.DisplayRole:
row = index.row()
col = index.column()
return MyQVariant(self._format % self._array[self._index,
row,
col])
return MyQVariant()
def _data3DIndex1(self, index, role=qt.Qt.DisplayRole):
if index.isValid():
if role == qt.Qt.DisplayRole:
row = index.row()
col = index.column()
return MyQVariant(self._format % self._array[row,
self._index,
col])
return MyQVariant()
def _data3DIndex2(self, index, role=qt.Qt.DisplayRole):
if index.isValid():
if role == qt.Qt.DisplayRole:
row = index.row()
col = index.column()
return MyQVariant(self._format % self._array[row,
col,
self._index])
return MyQVariant()
def setArrayData(self, data, perspective=0):
"""
setStackData(self, data, perspective=0)
data is a 3D array
dimension is the array dimension acting as index of images
"""
if qt.qVersion() > "4.6":
self.beginResetModel()
else:
self.reset()
self._array = data
self.assignDataFunction(perspective)
if len(data.shape) > 3:
self._index = []
for i in range(len(data.shape) - 2):
self._index.append(0)
if qt.qVersion() > "4.6":
self.endResetModel()
def assignDataFunction(self, dimension):
shape = self._array.shape
if len(shape) == 2:
self._rowCount = self._rowCount2D
self._columnCount = self._columnCount2D
self._data = self._data2D
elif len(shape) == 1:
self._rowCount = self._rowCount1D
self._columnCount = self._columnCount1D
self._data = self._data1D
elif len(shape) > 3:
# only C order array of images supported
self._rowCount = self._rowCountND
self._columnCount = self._columnCountND
self._data = self._dataND
else:
if dimension == 1:
self._rowCount = self._rowCount3DIndex1
self._columnCount = self._columnCount3DIndex1
self._data = self._data3DIndex1
elif dimension == 2:
self._rowCount = self._rowCount3DIndex2
self._columnCount = self._columnCount3DIndex2
self._data = self._data3DIndex1
else:
self._rowCount = self._rowCount3DIndex0
self._columnCount = self._columnCount3DIndex0
self._data = self._data3DIndex0
self._dimension = dimension
def setCurrentArrayIndex(self, index):
"""
This method is ignored if the current array does not
not a 3-dimensional array.
"""
shape = self._array.shape
if len(shape) < 3:
# index is ignored
return
if len(shape) == 3:
shape = self._array.shape[self._dimension]
if hasattr(index, "__len__"):
index = index[0]
if (index < 0) or (index >= shape):
raise ValueError("Index must be an integer lower than %d" % shape)
self._index = index
else:
# Only N-dimensional arrays of images supported
for i in range(len(index)):
idx = index[i]
if (idx < 0) or (idx >= shape[i]):
raise ValueError("Index %d must be positive integer lower than %d" % \
(idx, shape[i]))
self._index = index
def setFormat(self, fmt):
self._format = fmt
if __name__ == "__main__":
a = qt.QApplication([])
w = qt.QTableView()
d = numpy.random.normal(0,1, (5, 1000,1000))
for i in range(5):
d[i, :, :] += i
#m = NumpyArrayTableModel(fmt="%.5f")
#m = NumpyArrayTableModel(None, numpy.arange(100.), fmt="%.5f")
#m = NumpyArrayTableModel(None, numpy.ones((100,20)), fmt="%.5f")
m = NumpyArrayTableModel(None, d, fmt = "%.5f")
w.setModel(m)
m.setCurrentArrayIndex(4)
#m.setArrayData(numpy.ones((100,)))
w.show()
a.exec()
|