1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2020 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import os
import numpy
import time
import logging
_logger = logging.getLogger(__name__)
import sys
try:
from PyMca5.PyMcaIO import EdfFile
from PyMca5.PyMcaIO import TiffIO
except ImportError:
_logger.info("ArraySave.py is importing EdfFile and TiffIO from local directory")
import EdfFile
import TiffIO
HDF5 = True
try:
import h5py
if sys.version_info < (3, ):
text_dtype = h5py.special_dtype(vlen=unicode)
else:
text_dtype = h5py.special_dtype(vlen=str)
except ImportError:
HDF5 = False
def to_unicode(s):
"""Return string as unicode.
:param s: A string (bytestring or unicode string).
If s is a bytestring, it is assumed that it is utf-8 encoded text"""
if hasattr(s, "decode"):
return s.decode("utf-8")
return s
def to_h5py_utf8(str_list):
"""Convert a string or a list of strings to a variable length utf-8 string
compatible with h5py.
"""
return numpy.array(str_list, dtype=text_dtype)
def getDate():
localtime = time.localtime()
gtime = time.gmtime()
# year, month, day, hour, minute, second,\
# week_day, year_day, delta = time.localtime()
year = localtime[0]
month = localtime[1]
day = localtime[2]
hour = localtime[3]
minute = localtime[4]
second = localtime[5]
# get the difference against Greenwich
delta = hour - gtime[3]
return u"%4d-%02d-%02dT%02d:%02d:%02d%+02d:00" % (year, month, day, hour,
minute, second, delta)
def saveXY(x, y, filename, xlabel=None, ylabel=None,
csv=False, csvseparator=None, fmt=None):
"""
Convenience function to save two 1D arrays to file as pure ASCII (no header)
or as CSV.
- To save in EXCEL compatible format, csv=True and csvseparator=","
- To save in OMNIC compatible format, csv=False and csvseparator=","
"""
if xlabel is None:
xlabel = "x"
if ylabel is None:
ylabel = "y"
root, ext = os.path.splitext(os.path.basename(filename))
if ext == '':
if csv:
filename += ".csv"
else:
filename += ".txt"
if csvseparator is None:
if csv:
# CSV default separator set to colon
csvseparator = ","
else:
# ASCII default separator set to double space
csvseparator = " "
if fmt is None:
fmt = "%.7E%s%.7E\n"
if os.path.exists(filename):
try:
os.remove(filename)
except OSError:
_logger.critical("Cannot delete output file <%s>" % filename)
raise
with open(filename, mode="wb") as ffile:
if csv:
# we write the header line
ffile.write(('"%s"%s"%s"\n' % \
(xlabel, csvseparator, ylabel)).encode("utf-8"))
for i in range(len(y)):
ffile.write((fmt % (x[i], csvseparator, y[i])).encode("utf-8"))
def save2DArrayListAsMultipleASCII(datalist, fileroot,
labels=None, csv=False, csvseparator=";"):
if type(datalist) != type([]):
datalist = [datalist]
if labels is not None:
if len(labels) != len(datalist):
raise ValueError("Incorrect number of labels")
dirname = os.path.dirname(fileroot)
root, ext = os.path.splitext(os.path.basename(fileroot))
if ext == '':
if csv:
ext = "csv"
else:
ext = "txt"
n = int(numpy.log10(len(datalist))) + 1
fmt = "_%" + "0%dd" % n + ".%s"
for i in range(len(datalist)):
filename = os.path.join(dirname, root + fmt % (i, ext))
save2DArrayListAsASCII(datalist[i], filename,
labels=labels, csv=csv, csvseparator=csvseparator)
def save2DArrayListAsASCII(datalist, filename,
labels=None, csv=False, csvseparator=";"):
if type(datalist) != type([]):
datalist = [datalist]
r, c = datalist[0].shape
ndata = len(datalist)
if os.path.exists(filename):
try:
os.remove(filename)
except OSError:
_logger.critical("Cannot delete file <%s>" % filename)
if labels is None:
labels = []
for i in range(len(datalist)):
labels.append("Array_%d" % i)
if len(labels) != len(datalist):
raise ValueError("Incorrect number of labels")
if csv:
header = '"row"%s"column"' % csvseparator
for label in labels:
header += '%s"%s"' % (csvseparator, label)
else:
header = "row column"
for label in labels:
header += " %s" % label
filehandle = open(filename, 'w+')
filehandle.write('%s\n' % header)
fileline = ""
if csv:
for row in range(r):
for col in range(c):
fileline += "%d" % row
fileline += "%s%d" % (csvseparator, col)
for i in range(ndata):
fileline += "%s%g" % (csvseparator, datalist[i][row, col])
fileline += "\n"
filehandle.write("%s" % fileline)
fileline = ""
else:
for row in range(r):
for col in range(c):
fileline += "%d" % row
fileline += " %d" % col
for i in range(ndata):
fileline += " %g" % datalist[i][row, col]
fileline += "\n"
filehandle.write("%s" % fileline)
fileline = ""
filehandle.write("\n")
filehandle.close()
def save2DArrayListAsEDF(datalist, filename, labels=None, dtype=None):
if type(datalist) != type([]):
datalist = [datalist]
ndata = len(datalist)
if os.path.exists(filename):
try:
os.remove(filename)
except OSError:
pass
if labels is None:
labels = []
for i in range(ndata):
labels.append("Array_%d" % i)
if len(labels) != ndata:
raise ValueError("Incorrect number of labels")
edfout = EdfFile.EdfFile(filename, access="ab")
for i in range(ndata):
if dtype is None:
edfout.WriteImage({'Title': labels[i]},
datalist[i], Append=1)
else:
edfout.WriteImage({'Title': labels[i]},
datalist[i].astype(dtype),
Append=1)
del edfout # force file close
def save2DArrayListAsMonochromaticTiff(datalist, filename,
labels=None, dtype=None):
if type(datalist) != type([]):
datalist = [datalist]
ndata = len(datalist)
if dtype is None:
dtype = datalist[0].dtype
for i in range(len(datalist)):
dtypeI = datalist[i].dtype
if dtypeI in [numpy.float32, numpy.float64] or\
dtypeI.str[-2] == 'f':
dtype = numpy.float32
break
elif dtypeI != dtype:
dtype = numpy.float32
break
if labels is None:
labels = []
for i in range(ndata):
labels.append("Array_%d" % i)
if len(labels) != ndata:
raise ValueError("Incorrect number of labels")
multifile = False
if type(filename) in [type([]), type((1,))]:
if len(filename) == 1:
fileList = filename
elif len(filename) != len(labels):
raise ValueError("Incorrect number of files")
else:
fileList = filename
multifile = True
else:
fileList = [filename]
savedData = 0
while savedData < ndata:
if multifile:
fname = fileList[savedData]
else:
fname = fileList[0]
if os.path.exists(fname):
try:
os.remove(fname)
except OSError:
_logger.warning("Cannot remove file %s", fname)
pass
if (savedData == 0) or multifile:
outfileInstance = TiffIO.TiffIO(fname, mode="wb+")
if multifile:
# multiple files
if dtype is None:
data = datalist[savedData]
else:
data = datalist[savedData].astype(dtype)
outfileInstance.writeImage(data, info={'Title': labels[savedData]})
savedData += 1
else:
# a single file
for i in range(ndata):
if i == 1:
outfileInstance = TiffIO.TiffIO(fname, mode="rb+")
if dtype is None:
data = datalist[i]
else:
data = datalist[i].astype(dtype)
outfileInstance.writeImage(data, info={'Title': labels[i]})
savedData += 1
outfileInstance.close() # force file close
def openHDF5File(name, mode='a', **kwargs):
"""
Open an HDF5 file.
Valid modes (like Python's file() modes) are:
- r Readonly, file must exist
- r+ Read/write, file must exist
- w Create file, truncate if exists
- w- Create file, fail if exists
- a Read/write if exists, create otherwise (default)
sorted_with is a callable function like python's builtin sorted, or
None.
"""
h5file = h5py.File(name, mode, **kwargs)
if h5file.mode != 'r' and len(h5file) == 0:
if 'file_name' not in h5file.attrs:
h5file.attrs.create('file_name', to_h5py_utf8(name))
if 'file_time' not in h5file.attrs:
h5file.attrs.create('file_time', to_h5py_utf8(getDate()))
if 'HDF5_version' not in h5file.attrs:
txt = "%s" % h5py.version.hdf5_version
h5file.attrs.create('HDF5_version', to_h5py_utf8(txt))
if 'HDF5_API_version' not in h5file.attrs:
txt = "%s" % h5py.version.api_version
h5file.attrs.create('HDF5_API_version', to_h5py_utf8(txt))
if 'h5py_version' not in h5file.attrs:
txt = "%s" % h5py.version.version
h5file.attrs.create('h5py_version', to_h5py_utf8(txt))
if 'creator' not in h5file.attrs:
h5file.attrs.create('creator', to_h5py_utf8('PyMca'))
# if 'format_version' not in self.attrs and len(h5file) == 0:
# h5file.attrs['format_version'] = __format_version__
return h5file
def getHDF5FileInstanceAndBuffer(filename, shape,
buffername="data",
dtype=numpy.float32,
interpretation=None,
compression=None):
if not HDF5:
raise IOError('h5py does not seem to be installed in your system')
if os.path.exists(filename):
try:
os.remove(filename)
except:
raise IOError("Cannot overwrite existing file!")
hdf = openHDF5File(filename, 'a')
entryName = "data"
# entry
nxEntry = hdf.require_group(entryName)
if 'NX_class' not in nxEntry.attrs:
nxEntry.attrs['NX_class'] = u'NXentry'
elif nxEntry.attrs['NX_class'] not in [b'NXentry', u"NXentry"]:
# should I raise an error?
pass
nxEntry['title'] = u"PyMca saved 3D Array"
nxEntry['start_time'] = getDate()
nxData = nxEntry.require_group('NXdata')
if 'NX_class' not in nxData.attrs:
nxData.attrs['NX_class'] = u'NXdata'
elif nxData.attrs['NX_class'] in [b'NXdata', u'NXdata']:
# should I raise an error?
pass
if compression:
_logger.debug("Saving compressed and chunked dataset")
chunk1 = int(shape[1] / 10)
if chunk1 == 0:
chunk1 = shape[1]
for i in [11, 10, 8, 7, 5, 4]:
if (shape[1] % i) == 0:
chunk1 = int(shape[1] / i)
break
chunk2 = int(shape[2] / 10)
if chunk2 == 0:
chunk2 = shape[2]
for i in [11, 10, 8, 7, 5, 4]:
if (shape[2] % i) == 0:
chunk2 = int(shape[2] / i)
break
data = nxData.require_dataset(buffername,
shape=shape,
dtype=dtype,
chunks=(1, chunk1, chunk2),
compression=compression)
else:
#no chunking
_logger.debug("Saving not compressed and not chunked dataset")
data = nxData.require_dataset(buffername,
shape=shape,
dtype=dtype,
compression=None)
nxData.attrs['signal'] = to_unicode(buffername)
if interpretation is not None:
data.attrs['interpretation'] = to_unicode(interpretation)
for i in range(len(shape)):
dim = numpy.arange(shape[i]).astype(numpy.float32)
dset = nxData.require_dataset('dim_%d' % i,
dim.shape,
dim.dtype,
dim,
chunks=dim.shape)
nxData.attrs["axes"] = to_h5py_utf8(['dim_%d' % i
for i in range(len(shape))])
nxEntry['end_time'] = getDate()
return hdf, data
def save3DArrayAsMonochromaticTiff(data, filename,
labels=None, dtype=None, mcaindex=-1):
ndata = data.shape[mcaindex]
if dtype is None:
dtype = numpy.float32
if os.path.exists(filename):
try:
os.remove(filename)
except OSError:
pass
if labels is None:
labels = []
for i in range(ndata):
labels.append("Array_%d" % i)
if len(labels) != ndata:
raise ValueError("Incorrect number of labels")
outfileInstance = TiffIO.TiffIO(filename, mode="wb+")
if mcaindex in [2, -1]:
for i in range(ndata):
if i == 1:
outfileInstance = TiffIO.TiffIO(filename, mode="rb+")
if dtype is None:
tmpData = data[:, :, i]
else:
tmpData = data[:, :, i].astype(dtype)
outfileInstance.writeImage(tmpData, info={'Title': labels[i]})
if (ndata > 10):
print("Saved image %d of %d" % (i + 1, ndata))
_logger.info("Saved image %d of %d", i + 1, ndata)
elif mcaindex == 1:
for i in range(ndata):
if i == 1:
outfileInstance = TiffIO.TiffIO(filename, mode="rb+")
if dtype is None:
tmpData = data[:, i, :]
else:
tmpData = data[:, i, :].astype(dtype)
outfileInstance.writeImage(tmpData, info={'Title': labels[i]})
if (ndata > 10):
_logger.info("Saved image %d of %d", i + 1, ndata)
print("Saved image %d of %d" % (i + 1, ndata))
else:
for i in range(ndata):
if i == 1:
outfileInstance = TiffIO.TiffIO(filename, mode="rb+")
if dtype is None:
tmpData = data[i]
else:
tmpData = data[i].astype(dtype)
outfileInstance.writeImage(tmpData, info={'Title': labels[i]})
if (ndata > 10):
_logger.info("Saved image %d of %d",
i + 1, ndata)
print("Saved image %d of %d" % (i + 1, ndata))
outfileInstance.close() # force file close
# it should be used to name the data that for the time being is named 'data'.
def save3DArrayAsHDF5(data, filename, axes=None, labels=None, dtype=None, mode='nexus',
mcaindex=-1, interpretation=None, compression=None):
if not HDF5:
raise IOError('h5py does not seem to be installed in your system')
if (mcaindex == 0) and (interpretation in ["spectrum", None]):
# stack of images to be saved as stack of spectra
modify = True
shape = [data.shape[1], data.shape[2], data.shape[0]]
elif (mcaindex != 0) and (interpretation in ["image"]):
# stack of spectra to be saved as stack of images
modify = True
shape = [data.shape[2], data.shape[0], data.shape[1]]
else:
modify = False
shape = data.shape
if dtype is None:
dtype = data.dtype
if mode.lower() in ['nexus', 'nexus+']:
# raise IOError, 'NeXus data saving not implemented yet'
if os.path.exists(filename):
try:
os.remove(filename)
except:
raise IOError("Cannot overwrite existing file!")
hdf = openHDF5File(filename, 'a')
entryName = "data"
# entry
nxEntry = hdf.require_group(entryName)
if 'NX_class' not in nxEntry.attrs:
nxEntry.attrs['NX_class'] = u'NXentry'
elif nxEntry.attrs['NX_class'] not in [b'NXentry', u'NXentry']:
# should I raise an error?
pass
nxEntry['title'] = u"PyMca saved 3D Array"
nxEntry['start_time'] = getDate()
nxData = nxEntry.require_group('NXdata')
if 'NX_class' not in nxData.attrs:
nxData.attrs['NX_class'] = u'NXdata'
elif nxData.attrs['NX_class'] not in [u'NXdata', b'NXdata']:
# should I raise an error?
pass
if modify:
if interpretation in [b"image", u"image"]:
if compression:
_logger.debug("Saving compressed and chunked dataset")
#risk of taking a 10 % more space in disk
chunk1 = int(shape[1] / 10)
if chunk1 == 0:
chunk1 = shape[1]
for i in [11, 10, 8, 7, 5, 4]:
if (shape[1] % i) == 0:
chunk1 = int(shape[1] / i)
break
chunk2 = int(shape[2] / 10)
for i in [11, 10, 8, 7, 5, 4]:
if (shape[2] % i) == 0:
chunk2 = int(shape[2] / i)
break
dset = nxData.require_dataset('data',
shape=shape,
dtype=dtype,
chunks=(1, chunk1, chunk2),
compression=compression)
else:
_logger.debug("Saving not compressed and not chunked dataset")
#print not compressed -> Not chunked
dset = nxData.require_dataset('data',
shape=shape,
dtype=dtype,
compression=None)
for i in range(data.shape[-1]):
tmp = data[:, :, i:i + 1]
tmp.shape = 1, shape[1], shape[2]
dset[i, 0:shape[1], :] = tmp
_logger.info("Saved item %d of %d",
i + 1, data.shape[-1])
elif 0:
# if I do not match the input and output shapes it takes ages
# to save the images as spectra. However, it is much faster
# when performing spectra operations.
dset = nxData.require_dataset('data',
shape=shape,
dtype=dtype,
chunks=(1, shape[1], shape[2]))
for i in range(data.shape[1]): # shape[0]
chunk = numpy.zeros((1, data.shape[2], data.shape[0]),
dtype)
for k in range(data.shape[0]): # shape[2]
if 0:
tmpData = data[k:k + 1]
for j in range(data.shape[2]): # shape[1]
tmpData.shape = data.shape[1], data.shape[2]
chunk[0, j, k] = tmpData[i, j]
else:
tmpData = data[k:k + 1, i, :]
tmpData.shape = -1
chunk[0, :, k] = tmpData
_logger.info("Saving item %d of %d",
i, data.shape[1])
dset[i, :, :] = chunk
else:
# if I do not match the input and output shapes it takes ages
# to save the images as spectra. This is a very fast saving, but
# the performance is awful when reading.
if compression:
_logger.debug("Saving compressed and chunked dataset")
dset = nxData.require_dataset('data',
shape=shape,
dtype=dtype,
chunks=(shape[0], shape[1], 1),
compression=compression)
else:
_logger.debug("Saving not compressed and not chunked dataset")
dset = nxData.require_dataset('data',
shape=shape,
dtype=dtype,
compression=None)
for i in range(data.shape[0]):
tmp = data[i:i + 1, :, :]
tmp.shape = shape[0], shape[1], 1
dset[:, :, i:i + 1] = tmp
else:
if compression:
_logger.debug("Saving compressed and chunked dataset")
chunk1 = int(shape[1] / 10)
if chunk1 == 0:
chunk1 = shape[1]
for i in [11, 10, 8, 7, 5, 4]:
if (shape[1] % i) == 0:
chunk1 = int(shape[1] / i)
break
chunk2 = int(shape[2] / 10)
if chunk2 == 0:
chunk2 = shape[2]
for i in [11, 10, 8, 7, 5, 4]:
if (shape[2] % i) == 0:
chunk2 = int(shape[2] / i)
break
_logger.debug("Used chunk size = (1, %d, %d)",
chunk1, chunk2)
dset = nxData.require_dataset('data',
shape=shape,
dtype=dtype,
chunks=(1, chunk1, chunk2),
compression=compression)
else:
_logger.debug("Saving not compressed and notchunked dataset")
dset = nxData.require_dataset('data',
shape=shape,
dtype=dtype,
compression=None)
tmpData = numpy.zeros((1, data.shape[1], data.shape[2]),
data.dtype)
for i in range(data.shape[0]):
tmpData[0:1] = data[i:i + 1]
dset[i:i + 1] = tmpData[0:1]
_logger.info("Saved item %d of %d", i + 1, data.shape[0])
nxData.attrs["signal"] = u'data'
if interpretation is not None:
dset.attrs['interpretation'] = to_unicode(interpretation)
axesAttribute = []
for i in range(len(shape)):
if axes is None:
dim = numpy.arange(shape[i]).astype(numpy.float32)
dimlabel = 'dim_%d' % i
elif axes[i] is not None:
dim = axes[i]
try:
if labels[i] in [None, 'None']:
dimlabel = 'dim_%d' % i
else:
dimlabel = "%s" % labels[i]
except:
dimlabel = 'dim_%d' % i
else:
dim = numpy.arange(shape[i]).astype(numpy.float32)
dimlabel = 'dim_%d' % i
axesAttribute.append(dimlabel)
adset = nxData.require_dataset(dimlabel,
dim.shape,
dim.dtype,
compression=None)
adset[:] = dim[:]
adset.attrs['axis'] = i + 1
nxData.attrs["axes"] = to_h5py_utf8([axAttr for axAttr in axesAttribute])
nxEntry['end_time'] = getDate()
if mode.lower() == 'nexus+':
# create link
# Deprecated: g = h5py.h5g.open(hdf.fid, '/')
g = h5py.h5g.open(hdf.id, '/')
g.link('/data/NXdata/data',
'/data/data',
h5py.h5g.LINK_HARD)
elif mode.lower() == 'simplest':
if os.path.exists(filename):
try:
os.remove(filename)
except:
raise IOError("Cannot overwrite existing file!")
hdf = h5py.File(filename, 'a')
if compression:
hdf.require_dataset('data',
shape=shape,
dtype=dtype,
data=data,
chunks=(1, shape[1], shape[2]),
compression=compression)
else:
hdf.require_dataset('data',
shape=shape,
data=data,
dtype=dtype,
compression=None)
else:
if os.path.exists(filename):
try:
os.remove(filename)
except:
raise IOError("Cannot overwrite existing file!")
shape = data.shape
dtype = data.dtype
hdf = h5py.File(filename, 'a')
dataGroup = hdf.require_group('data')
dataGroup.require_dataset('data',
shape=shape,
dtype=dtype,
data=data,
chunks=(1, shape[1], shape[2]))
hdf.flush()
hdf.close()
def main():
a = numpy.arange(1000000.)
a.shape = 20, 50, 1000
save3DArrayAsHDF5(a, '/test.h5', mode='nexus+', interpretation='image')
getHDF5FileInstanceAndBuffer('/test2.h5', (100, 100, 100))
print("Date String = ", getDate())
if __name__ == "__main__":
main()
|