1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2015 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
try:
from . import mediantools
except ImportError:
from PyMca5.PyMcaSciPy.signal import mediantools
from numpy import asarray
def medfilt2d(input_data, kernel_size=None, conditional=0):
"""Median filter for 2-dimensional arrays.
Description:
Apply a median filter to the input array using a local window-size
given by kernel_size (must be odd).
Inputs:
in -- An 2 dimensional input array.
kernel_size -- A scalar or an length-2 list giving the size of the
median filter window in each dimension. Elements of
kernel_size should be odd. If kernel_size is a scalar,
then this scalar is used as the size in each dimension.
conditional -- If different from 0 implements a conditional median filter.
Outputs: (out,)
out -- An array the same size as input containing the median filtered
result.
"""
image = asarray(input_data)
if kernel_size is None:
kernel_size = [3] * 2
kernel_size = asarray(kernel_size)
if len(kernel_size.shape) == 0:
kernel_size = [kernel_size.item()] * 2
kernel_size = asarray(kernel_size)
for size in kernel_size:
if (size % 2) != 1:
raise ValueError("Each element of kernel_size should be odd.")
return mediantools._medfilt2d(image, kernel_size, conditional)
def medfilt1d(input_data, kernel_size=None, conditional=0):
"""Median filter 1-dimensional arrays.
Description:
Apply a median filter to the input array using a local window-size
given by kernel_size (must be odd).
Inputs:
in -- An 1-dimensional input array.
kernel_size -- A scalar or an length-2 list giving the size of the
median filter window in each dimension. Elements of
kernel_size should be odd. If kernel_size is a scalar,
then this scalar is used as the size in each dimension.
conditional -- If different from 0 implements a conditional median filter.
Outputs: (out,)
out -- An array the same size as input containing the median filtered
result.
"""
image = asarray(input_data)
oldShape = image.shape
image.shape = -1, 1
if kernel_size is None:
kernel_size = [3, 1]
kernel_size = asarray(kernel_size)
if len(kernel_size.shape) == 0:
kernel_size = [kernel_size.item(), 1]
kernel_size = asarray(kernel_size)
for size in kernel_size:
if (size % 2) != 1:
image.shape = oldShape
raise ValueError("Kernel_size should be odd.")
output = mediantools._medfilt2d(image, kernel_size, conditional)
output.shape = oldShape
image.shape = oldShape
return output
|