File: SNIPModule.py

package info (click to toggle)
pymca 5.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,392 kB
  • sloc: python: 155,456; ansic: 15,843; makefile: 116; sh: 73; xml: 55
file content (205 lines) | stat: -rw-r--r-- 7,703 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2019 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import numpy
from .fitting import SpecfitFuns

snip1d = SpecfitFuns.snip1d
snip2d = SpecfitFuns.snip2d


def getSpectrumBackground(spectrum, width, roi_min=None, roi_max=None, smoothing=1):
    if roi_min is None:
        roi_min = 0
    if roi_max is None:
        roi_max = len(spectrum)
    background = spectrum * 1
    background[roi_min:roi_max] = snip1d(spectrum[roi_min:roi_max], width, smoothing)
    return background

getSnip1DBackground = getSpectrumBackground

def subtractSnip1DBackgroundFromStack(stack, width, roi_min=None, roi_max=None,  smoothing=1):
    mcaIndex = -1
    if hasattr(stack, "info") and hasattr(stack, "data"):
        data = stack.data
        mcaIndex = stack.info.get('McaIndex', -1)
    else:
        data = stack
    if not isinstance(data, numpy.ndarray):
        raise TypeError("This Plugin only supports numpy arrays")

    if roi_min is None:
        roi_min = 0
    if roi_max is None:
        roi_max = data.shape[mcaIndex]

    oldShape = data.shape
    if mcaIndex in [-1, len(data.shape)-1]:
        data.shape = -1, oldShape[-1]
        if roi_min > 0:
            data[:, 0:roi_min] = 0
        if roi_max < oldShape[-1]:
            data[:, roi_max:] = 0
        for i in range(data.shape[0]):
            data[i,roi_min:roi_max] -= snip1d(data[i,roi_min:roi_max],
                                              width, smoothing)
        data.shape = oldShape

    elif mcaIndex == 0:
        data.shape = oldShape[0], -1
        for i in range(data.shape[-1]):
            data[roi_min:roi_max, i] -= snip1d(data[roi_min:roi_max, i],
                                               width, smoothing)
        data.shape = oldShape
    else:
        raise ValueError("Invalid 1D index %d" % mcaIndex)
    return

def replaceStackWithSnip1DBackground(stack, width, roi_min=None, roi_max=None,  smoothing=1):
    mcaIndex = -1
    if hasattr(stack, "info") and hasattr(stack, "data"):
        data = stack.data
        mcaIndex = stack.info.get('McaIndex', -1)
    else:
        data = stack
    if not isinstance(data, numpy.ndarray):
        raise TypeError("This Plugin only supports numpy arrays")

    if roi_min is None:
        roi_min = 0
    if roi_max is None:
        roi_max = data.shape[mcaIndex]

    oldShape = data.shape
    if mcaIndex in [-1, len(data.shape)-1]:
        data.shape = -1, oldShape[-1]
        if roi_min > 0:
            data[:, 0:roi_min] = 0
        if roi_max < oldShape[-1]:
            data[:, roi_max:] = 0
        for i in range(data.shape[0]):
            data[i,roi_min:roi_max] = snip1d(data[i,roi_min:roi_max],
                                              width, smoothing)
        data.shape = oldShape

    elif mcaIndex == 0:
        data.shape = oldShape[0], -1
        for i in range(data.shape[-1]):
            data[roi_min:roi_max, i] = snip1d(data[roi_min:roi_max, i],
                                               width, smoothing)
        data.shape = oldShape
    else:
        raise ValueError("Invalid 1D index %d" % mcaIndex)
    return


def getImageBackground(image, width, roi_min=None, roi_max=None, smoothing=1):
    if roi_min is None:
        roi_min = (0, 0)
    if roi_max is None:
        roi_max = image.shape
    background = image * 1
    background[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]]=\
             snip2d(image[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]],
                    width,
                    smoothing)
    return background

getSnip2DBackground = getImageBackground

def subtractSnip2DBackgroundFromStack(stack, width, roi_min=None, roi_max=None,  smoothing=1, index=None):
    """
    index is the dimension used to index the images
    """
    if hasattr(stack, "info") and hasattr(stack, "data"):
        data = stack.data
        if index is None:
            index = stack.info.get('McaIndex', 0)
    else:
        data = stack
    if index is None:
        index = 2
    if not isinstance(data, numpy.ndarray):
        raise TypeError("This Plugin only supports numpy arrays")

    if roi_min is None:
        roi_min = (0, 0)
    if roi_max is None:
        roi_max = tuple(data.shape[i] for i in range(3) if i != index)

    shape = data.shape
    if index == 0:
        if (roi_min[0] > 0) or (roi_min[1] > 0):
            data[:, 0:roi_min[0], 0:roi_min[1]] = 0
        if roi_max[0] < (shape[1]-1):
            if roi_max[1] < (shape[2]-1):
                data[:, roi_max[0]:, roi_max[1]:] = 0
            else:
                data[:, roi_max[0]:, :] = 0
        else:
            if roi_max[1] < (shape[2]-1):
                data[:, :, roi_max[1]:] = 0
        for i in range(shape[index]):
            data[i,roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]] -=\
                snip2d(data[i,roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]], width, smoothing)
        return
    if index == 1:
        if (roi_min[0] > 0) or (roi_min[1] > 0):
            data[0:roi_min[0], :, 0:roi_min[1]] = 0
        if roi_max[0] < (shape[0]-1):
            if roi_max[1] < (shape[2]-1):
                data[roi_max[0]:, :, roi_max[1]:] = 0
            else:
                data[roi_max[0]:, :, :] = 0
        else:
            if roi_max[1] < (shape[2]-1):
                data[:, :, roi_max[1]:] = 0
        for i in range(shape[index]):
            data[roi_min[0]:roi_max[0], i, roi_min[1]:roi_max[1]] -=\
                snip2d(data[roi_min[0]:roi_max[0], i, roi_min[1]:roi_max[1]], width, smoothing)
        return
    if index == 2:
        if (roi_min[0] > 0) or (roi_min[1] > 0):
            data[0:roi_min[0], 0:roi_min[1],:] = 0
        if roi_max[0] < (shape[0]-1):
            if roi_max[1] < (shape[1]-1):
                data[roi_max[0]:, roi_max[1]:, :] = 0
            else:
                data[roi_max[0]:, :, :] = 0
        else:
            if roi_max[1] < (shape[2]-1):
                data[:, roi_max[1]:, :] = 0
        for i in range(shape[index]):
            data[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1], i] -=\
                snip2d(data[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1], i], width, smoothing)
        return