File: SpecArithmetic.py

package info (click to toggle)
pymca 5.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,392 kB
  • sloc: python: 155,456; ansic: 15,843; makefile: 116; sh: 73; xml: 55
file content (158 lines) | stat: -rw-r--r-- 4,669 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2014 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """
This module implements several mathematical functions:
    - peak search
    - center of mass search
    - fwhm search
WARNING : array are numpy.ndarray objects.
"""

import numpy

def search_peak(xdata, ydata):
     """
     Search a peak and its position in arrays xdata ad ydata.
     Return three integer:
       - peak position
       - peak value
       - index of peak position in array xdata
         This result may accelerate the fwhm search.
     """
     ymax   = max(ydata)
     idx    = __give_index(ymax,ydata)
     return xdata[idx],ymax,idx


def search_com(xdata,ydata):
    """
    Return the center of mass in arrays xdata and ydata
    """
    # make sure com is inside the region
    ydata = ydata - numpy.min(ydata)
    num    = numpy.sum(xdata*ydata)
    denom  = numpy.sum(ydata).astype(numpy.float64)
    try:
       result = num/denom
    except ZeroDivisionError:
       result = numpy.mean(x)
    return result


def search_fwhm(xdata,ydata,peak=None,index=None):
    """
    Search a fwhm and its center in arrays xdata and ydatas.
    If no fwhm is found, (0,0) is returned.
    peak and index which are coming from search_peak result, may
    accelerate calculation
    """
    if peak is None or index is None:
        x,mypeak,index_peak = search_peak(xdata,ydata)
    else:
        mypeak     = peak
        index_peak = index

    mymin = numpy.min(ydata)
    hm = (mypeak-mymin)/2 + mymin
    idx = index_peak

    lpeak = False
    upeak = False

    if numpy.any(ydata[0:idx] < hm):
        lpeak = True
    if numpy.any(ydata[idx:] < hm):
        upeak = True

    if lpeak and upeak:
        # it is a peak so we keep the data and half-max
        pass
    elif lpeak:
        # it is step-like data with a positive gradient 
        ydata = numpy.gradient(ydata)
        hm = (numpy.max(ydata)-numpy.min(ydata))/2+numpy.min(ydata)
    else:
        # it is step-like data with a negative gradient
        ydata = -1*numpy.gradient(ydata)
        hm = (numpy.max(ydata)-numpy.min(ydata))/2+numpy.min(ydata)

    index_peak = numpy.argmax(ydata)
    idx = index_peak
    try:
        while ydata[idx] >= hm:
           idx = idx-1
        x0 = xdata[idx]
        x1 = xdata[idx+1]
        y0 = ydata[idx]
        y1 = ydata[idx+1]

        lhmx = (hm*(x1-x0) - (y0*x1)+(y1*x0)) / (y1-y0)
    except ZeroDivisionError:
        lhmx = 0
    except IndexError:
        lhmx = xdata[0]

    idx = index_peak
    try:
        while ydata[idx] >= hm:
            idx = idx+1

        x0 = xdata[idx-1]
        x1 = xdata[idx]
        y0 = ydata[idx-1]
        y1 = ydata[idx]

        uhmx = (hm*(x1-x0) - (y0*x1)+(y1*x0)) / (y1-y0)
    except ZeroDivisionError:
        uhmx = 0
    except IndexError:
        uhmx = xdata[-1]

    FWHM  = uhmx - lhmx
    CFWHM = (uhmx+lhmx)/2
    return FWHM,CFWHM


def __give_index(elem,array):
     """
     Return the index of elem in array
     """
     mylist = array.tolist()
     return mylist.index(elem)


def test():
    pass

if __name__ == '__main__':
       test()