File: SimpleFitAll.py

package info (click to toggle)
pymca 5.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,392 kB
  • sloc: python: 155,456; ansic: 15,843; makefile: 116; sh: 73; xml: 55
file content (446 lines) | stat: -rw-r--r-- 18,622 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2017-2022 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
import sys
import os
import numpy
import h5py
import datetime
import logging

from PyMca5.PyMcaIO import ConfigDict
import PyMca5


if sys.version_info < (3, ):
    text_dtype = h5py.special_dtype(vlen=unicode)
else:
    text_dtype = h5py.special_dtype(vlen=str)


_logger = logging.getLogger(__name__)


CONS = ['FREE',
        'POSITIVE',
        'QUOTED',
        'FIXED',
        'FACTOR',
        'DELTA',
        'SUM',
        'IGNORE']


def to_h5py_utf8(str_list):
    """Convert a string or a list of strings to a numpy array of
    unicode strings that can be written to HDF5 as utf-8.
    """
    return numpy.array(str_list, dtype=text_dtype)

def to_utf8(x):
    if hasattr(x, 'decode'):
        return x.decode('utf-8')
    else:
        return x

class SimpleFitAll(object):
    """Fit module designed to fit a number of curves, and save its
    output to HDF5 - nexus."""
    def __init__(self, fit):
        self.fit = fit
        self.curves_x = None
        self.curves_y = None
        self.curves_sigma = None
        self.legends = None
        self.xlabels = None
        self.ylabels = None
        self.xMin = None
        self.xMax = None
        self.outputDir = PyMca5.PyMcaDirs.outputDir
        self.outputFileName = None
        self._progress = 0.0
        self._status = "Ready"
        self._currentFitIndex = None
        self._currentSigma = None
        self._nSpectra = None
        self.progressCallback = None
        # optimization variables
        self.__estimationPolicy = "always"
        self._currentFitStartTime = ""
        self._currentFitEndTime = ""

    def setProgressCallback(self, method):
        """
        The method will be called as method(current_fit_index, total_fit_index)
        """
        self.progressCallback = method

    def progressUpdate(self):
        """
        This method returns a dictionary with the keys
        progress: A number between 0 and 100 indicating the fit progress
        status: Status of the calculation thread.
        """
        ddict = {
            'progress': self._progress,
            'status': self._status}
        return ddict

    def setOutputDirectory(self, outputdir):
        self.outputDir = outputdir

    def setOutputFileName(self, outputfile):
        self.outputFileName = outputfile

    def setData(self, curves_x, curves_y, sigma=None, xmin=None, xmax=None,
                legends=None, xlabels=None, ylabels=None):
        """

        :param curves_x: List of 1D arrays, one per curve, or single 1D array
        :param curves_y: List of 1D arrays, one per curve
        :param sigma: List of 1D arrays, one per curve, or single 1D array
        :param float xmin:
        :param float xmax:
        :param List[str] legends: List of curve legends. If None, defaults to
            ``["curve0", "curve1"...]``
        """
        self.curves_x = curves_x
        self.curves_y = curves_y
        self.curves_sigma = sigma
        self.xMin = xmin
        self.xMax = xmax
        self.legends = legends or ["curve%d" % i for i in range(len(curves_y))]
        self.xlabels = xlabels or ["X" for _cy in curves_y]
        self.ylabels = ylabels or ["Y" for _cy in curves_y]

    def setConfigurationFile(self, fname):
        if not os.path.exists(fname):
            raise IOError("File %s does not exist" % fname)
        w = ConfigDict.ConfigDict()
        w.read(fname)
        self.setConfiguration(w)

    def setConfiguration(self, ddict):
        self.fit.setConfiguration(ddict, try_import=True)

    def processAll(self):
        assert self.curves_y is not None, "You must first call setData()!"
        data = self.curves_y

        # create output file
        with h5py.File(self.getOutputFileName(), mode="w-") as h5f:
            h5f.attrs["NX_class"] = "NXroot"

        # get the total number of fits to be performed
        self._nSpectra = len(data)

        # a watcher to verify if a table can be generated
        self._referenceParameters = None

        # optimization
        self.__estimationPolicy = "always"
        backgroundPolicy = self.fit._fitConfiguration['fit']['background_estimation_policy']
        functionPolicy = self.fit._fitConfiguration['fit']['function_estimation_policy']
        if "Estimate always" in [functionPolicy, backgroundPolicy]:
            self.__estimationPolicy = "always"
        elif "Estimate once" in [functionPolicy, backgroundPolicy]:
            self.__estimationPolicy = "once"
        else:
            self.__estimationPolicy = "never"

        # initialize control variables
        self._parameters = None
        self._progress = 0
        self._status = "Fitting"
        for i in range(self._nSpectra):
            self._progress = (i * 100.) / self._nSpectra
            try:
                self.processSpectrum(i)
            except:
                _logger.error(
                        "Error %s processing index = %d", sys.exc_info()[1], i)
                if _logger.getEffectiveLevel() == logging.DEBUG:
                    raise
        self.onProcessSpectraFinished()
        self._status = "Ready"
        if self.progressCallback is not None:
            self.progressCallback(self._nSpectra, self._nSpectra)

    def processSpectrum(self, i):
        self._currentFitStartTime = datetime.datetime.now().isoformat()
        self.aboutToGetSpectrum(i)
        x, y, sigma, xmin, xmax = self.getFitInputValues(i)
        self.fit.setData(x, y, sigma=sigma, xmin=xmin, xmax=xmax)
        if self._parameters is None and self.__estimationPolicy != "never":
            _logger.debug("First estimation")
            self.fit.estimate()
        elif self.__estimationPolicy == "always":
            _logger.debug("Estimation due to settings")
            self.fit.estimate()
        else:
            _logger.debug("Using user estimation")

        self.estimateFinished()
        values, chisq, sigmaFromFit, niter, lastdeltachi = self.fit.startFit()
        self._currentSigma = abs(sigma + (sigma == 0)) if sigma is not None else\
            numpy.sqrt(abs(y) + (y == 0))

        self._currentFitEndTime = datetime.datetime.now().isoformat()
        self.fitOneSpectrumFinished()

    def getFitInputValues(self, index):
        """
        Returns the fit parameters x, y, sigma, xmin, xmax
        """
        # get y (always a list of 1D arrays)
        y = self.curves_y[index]

        # get x
        if self.curves_x is None:
            nValues = y.size
            x = numpy.arange(float(nValues))
            x.shape = y.shape
            self.curves_x = x
        elif hasattr(self.curves_x, "shape") and len(self.curves_x.shape) == 1:
            # same x array for all curves
            x = self.curves_x
        else:
            # list of abscissas, one per curve
            x = self.curves_x[index]

        assert x.shape == y.shape

        if self.curves_sigma is None:
            return x, y, None, self.xMin, self.xMax

        # get sigma
        if hasattr(self.curves_sigma, "shape") and len(self.curves_sigma.shape) == 1:
            # only one sigma for all the y values
            sigma = self.curves_sigma
        else:
            sigma = self.curves_sigma[index]
        assert sigma.shape == y.shape

        return x, y, sigma, self.xMin, self.xMax

    def estimateFinished(self):
        _logger.debug("Estimate finished")

    def aboutToGetSpectrum(self, idx):
        _logger.debug("New spectrum %d", idx)
        self._currentFitIndex = idx
        if self.progressCallback is not None:
            self.progressCallback(idx, self._nSpectra)

    def fitOneSpectrumFinished(self):
        _logger.debug("fit finished")

        # get parameter results
        fitOutput = self.fit.getResult(configuration=False)
        result = fitOutput['result']
        idx = self._currentFitIndex
        parNames = [x["name"] for x in self.fit.paramlist]
        if idx == 0:
            self._referenceParameters = parNames
        if self._referenceParameters is not None:
            if self._referenceParameters == parNames:
                _logger.info("Fit of spectrum %d has same parameters" % idx)
            else:
                _logger.info("Fit of spectrum %d has different parameters" % idx)
                self._referenceParameters = None

        if result is None:
            _logger.warning("result not valid for index %d", idx)
            return

        self._appendOneResultToHdf5(resultDict=fitOutput["result"])

    def _appendOneResultToHdf5(self, resultDict):
        # Get all the  necessary data (TODO: pass it to method as attrs)
        idx = self._currentFitIndex
        end_time = self._currentFitEndTime
        start_time = self._currentFitStartTime
        sigma = self._currentSigma
        legend = self.legends[idx]
        xlabel = self.xlabels[idx]
        ylabel = self.ylabels[idx]
        x, y, _inSigma, xMin, xMax = self.getFitInputValues(idx)
        fitted_data = self.fit.evaluateDefinedFunction(x)
        configIni = ConfigDict.ConfigDict(self.fit.getConfiguration()).tostring()
        fit_paramlist = self.fit.paramlist
        filename = self.getOutputFileName()

        # Write the data to file (append)
        self._entryNameFormat = "fit_%d"
        with h5py.File(filename, mode="r+") as h5f:
            entry = h5f.create_group(self._entryNameFormat % idx)
            entry.attrs["NX_class"] = to_h5py_utf8("NXentry")
            entry.attrs["default"] = to_h5py_utf8("fit_process/results/plot")
            entry.create_dataset("start_time",
                                 data=to_h5py_utf8(start_time))
            entry.create_dataset("end_time", data=to_h5py_utf8(end_time))
            entry.create_dataset("title",
                                 data=to_h5py_utf8("Fit of '%s'" % legend))

            process = entry.create_group("fit_process")
            process.attrs["NX_class"] = to_h5py_utf8("NXprocess")
            process.create_dataset("program", data=to_h5py_utf8("pymca"))
            process.create_dataset("version", data=to_h5py_utf8(PyMca5.version()))
            process.create_dataset("date", data=to_h5py_utf8(end_time))

            configuration = process.create_group("configuration")
            configuration.attrs["NX_class"] = to_h5py_utf8("NXnote")
            configuration.create_dataset("type", data=to_h5py_utf8("text/plain"))
            configuration.create_dataset("data", data=to_h5py_utf8(configIni))
            configuration.create_dataset("file_name", data=to_h5py_utf8("SimpleFit.ini"))
            configuration.create_dataset("description",
                                         data=to_h5py_utf8("Fit configuration"))

            results = process.create_group("results")
            results.attrs["NX_class"] = to_h5py_utf8("NXcollection")

            estimation = results.create_group("estimation")
            estimation.attrs["NX_class"] = to_h5py_utf8("NXcollection")

            for p in fit_paramlist:
                pgroup = estimation.create_group(p["name"])
                # constraint code can be an int, convert to str
                if numpy.issubdtype(numpy.array(p['code']).dtype,
                                    numpy.integer):
                    pgroup.create_dataset('code', data=to_h5py_utf8(CONS[p['code']]))
                else:
                    pgroup.create_dataset('code', data=to_h5py_utf8(p['code']))
                pgroup.create_dataset('cons1', data=p['cons1'])
                pgroup.create_dataset('cons2', data=p['cons2'])
                pgroup.create_dataset('estimation', data=p['estimation'])

            for key, value in resultDict.items():
                if not numpy.issubdtype(type(key), numpy.character):
                    _logger.debug("skipping key %s (not a text string)", key)
                    continue
                if key == "fittedvalues":
                    output_key = "parameter_values"
                elif key == "parameters":
                    output_key = "parameter_names"
                elif key == "sigma_values":
                    output_key = "parameter_sigmas"
                else:
                    output_key = key

                value_dtype = numpy.array(value).dtype
                if numpy.issubdtype(value_dtype, numpy.number) or\
                        numpy.issubdtype(value_dtype, numpy.bool_):
                    # straightforward conversion to HDF5
                    results.create_dataset(output_key,
                                           data=value)
                elif numpy.issubdtype(value_dtype, numpy.character):
                    # ensure utf-8 output
                    results.create_dataset(output_key,
                                           data=to_h5py_utf8(value))

            plot = results.create_group("plot")
            plot.attrs["NX_class"] = to_h5py_utf8("NXdata")
            plot.attrs["signal"] = to_h5py_utf8("raw_data")
            plot.attrs["auxiliary_signals"] = to_h5py_utf8(["fitted_data"])
            plot.attrs["axes"] = to_h5py_utf8(["x"])
            plot.attrs["title"] = to_h5py_utf8("Fit of '%s'" % legend)
            signal = plot.create_dataset("raw_data", data=y)
            if ylabel is not None:
                signal.attrs["long_name"] = to_h5py_utf8(ylabel)
            axis = plot.create_dataset("x", data=x)
            if xlabel is not None:
                axis.attrs["long_name"] = to_h5py_utf8(xlabel)
            if sigma is not None:
                plot.create_dataset("errors", data=sigma)
            plot.create_dataset("fitted_data", data=fitted_data)

    def getOutputFileName(self):
        return os.path.join(self.outputDir,
                            self.outputFileName)

    def _isSummaryEntryAcceptable(self):
        if self._referenceParameters is not None:
            if self._nSpectra > 1:
                return True

    def _createSummaryEntry(self):
        filename = self.getOutputFileName()
        with h5py.File(filename, mode="r+") as h5f:
            for idx in range(self._nSpectra):
                inputEntryName = os.path.join("/", self._entryNameFormat % idx)
                inputEntry = h5f[inputEntryName]
                start_time = inputEntry["start_time"]
                end_time = inputEntry["end_time"]
                chisq = inputEntry["fit_process/results/chisq"]
                parameterValues = inputEntry["fit_process/results/parameter_values"]
                parameterErrors = inputEntry["fit_process/results/parameter_sigmas"]
                parameterNames = inputEntry["fit_process/results/parameter_names"]
                if idx == 0:
                    entry = h5f.create_group("fit_summary")
                    entry.attrs["NX_class"] = u"NXentry"
                    entry.attrs["default"] = u"result"
                    entry["start_time"] = to_h5py_utf8(datetime.datetime.now().isoformat())
                    result = entry.create_group("result")
                    result.attrs["NX_class"] = u"NXdata"
                    result.attrs["axes"] = to_h5py_utf8(["index"])
                    result.attrs["signal"] = to_h5py_utf8("chisq")
                    result["index"] = numpy.arange(self._nSpectra)
                    result.create_dataset("chisq",
                                          shape=(self._nSpectra,),
                                          dtype=numpy.float32)
                    for parameter0 in parameterNames:
                        parameter = to_utf8(parameter0)
                        result.create_dataset(parameter,
                                              shape=(self._nSpectra,),
                                              dtype=numpy.float32)
                        result.create_dataset(parameter + "_errors",
                                              shape=(self._nSpectra,),
                                              dtype=numpy.float32)
                        result.create_dataset(parameter + "_estimation",
                                              shape=(self._nSpectra,),
                                              dtype=numpy.float32)
                result["chisq"][idx] = chisq
                for par in range(len(parameterNames)):
                    parameter = to_utf8(parameterNames[par])
                    estimationName = "fit_process/results/estimation/%s/estimation" % \
                                     parameter
                    estimation = inputEntry[estimationName]
                    result[parameter][idx] = parameterValues[par]
                    result[parameter + "_errors"][idx] = parameterErrors[par]
                    result[parameter + "_estimation"][idx] = estimation
            
            entry["end_time"] = to_h5py_utf8(datetime.datetime.now().isoformat())
            first = self._entryNameFormat % 0
            last = self._entryNameFormat % (self._nSpectra - 1)
            entry["title"] = "Summary of %s to %s" % (first, last)
            
    def onProcessSpectraFinished(self):
        _logger.debug("All curves processed")
        self._status = "Curves Fitting finished"
        if self._isSummaryEntryAcceptable():
            self._createSummaryEntry()