1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2017-2022 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
import sys
import os
import numpy
import h5py
import datetime
import logging
from PyMca5.PyMcaIO import ConfigDict
import PyMca5
if sys.version_info < (3, ):
text_dtype = h5py.special_dtype(vlen=unicode)
else:
text_dtype = h5py.special_dtype(vlen=str)
_logger = logging.getLogger(__name__)
CONS = ['FREE',
'POSITIVE',
'QUOTED',
'FIXED',
'FACTOR',
'DELTA',
'SUM',
'IGNORE']
def to_h5py_utf8(str_list):
"""Convert a string or a list of strings to a numpy array of
unicode strings that can be written to HDF5 as utf-8.
"""
return numpy.array(str_list, dtype=text_dtype)
def to_utf8(x):
if hasattr(x, 'decode'):
return x.decode('utf-8')
else:
return x
class SimpleFitAll(object):
"""Fit module designed to fit a number of curves, and save its
output to HDF5 - nexus."""
def __init__(self, fit):
self.fit = fit
self.curves_x = None
self.curves_y = None
self.curves_sigma = None
self.legends = None
self.xlabels = None
self.ylabels = None
self.xMin = None
self.xMax = None
self.outputDir = PyMca5.PyMcaDirs.outputDir
self.outputFileName = None
self._progress = 0.0
self._status = "Ready"
self._currentFitIndex = None
self._currentSigma = None
self._nSpectra = None
self.progressCallback = None
# optimization variables
self.__estimationPolicy = "always"
self._currentFitStartTime = ""
self._currentFitEndTime = ""
def setProgressCallback(self, method):
"""
The method will be called as method(current_fit_index, total_fit_index)
"""
self.progressCallback = method
def progressUpdate(self):
"""
This method returns a dictionary with the keys
progress: A number between 0 and 100 indicating the fit progress
status: Status of the calculation thread.
"""
ddict = {
'progress': self._progress,
'status': self._status}
return ddict
def setOutputDirectory(self, outputdir):
self.outputDir = outputdir
def setOutputFileName(self, outputfile):
self.outputFileName = outputfile
def setData(self, curves_x, curves_y, sigma=None, xmin=None, xmax=None,
legends=None, xlabels=None, ylabels=None):
"""
:param curves_x: List of 1D arrays, one per curve, or single 1D array
:param curves_y: List of 1D arrays, one per curve
:param sigma: List of 1D arrays, one per curve, or single 1D array
:param float xmin:
:param float xmax:
:param List[str] legends: List of curve legends. If None, defaults to
``["curve0", "curve1"...]``
"""
self.curves_x = curves_x
self.curves_y = curves_y
self.curves_sigma = sigma
self.xMin = xmin
self.xMax = xmax
self.legends = legends or ["curve%d" % i for i in range(len(curves_y))]
self.xlabels = xlabels or ["X" for _cy in curves_y]
self.ylabels = ylabels or ["Y" for _cy in curves_y]
def setConfigurationFile(self, fname):
if not os.path.exists(fname):
raise IOError("File %s does not exist" % fname)
w = ConfigDict.ConfigDict()
w.read(fname)
self.setConfiguration(w)
def setConfiguration(self, ddict):
self.fit.setConfiguration(ddict, try_import=True)
def processAll(self):
assert self.curves_y is not None, "You must first call setData()!"
data = self.curves_y
# create output file
with h5py.File(self.getOutputFileName(), mode="w-") as h5f:
h5f.attrs["NX_class"] = "NXroot"
# get the total number of fits to be performed
self._nSpectra = len(data)
# a watcher to verify if a table can be generated
self._referenceParameters = None
# optimization
self.__estimationPolicy = "always"
backgroundPolicy = self.fit._fitConfiguration['fit']['background_estimation_policy']
functionPolicy = self.fit._fitConfiguration['fit']['function_estimation_policy']
if "Estimate always" in [functionPolicy, backgroundPolicy]:
self.__estimationPolicy = "always"
elif "Estimate once" in [functionPolicy, backgroundPolicy]:
self.__estimationPolicy = "once"
else:
self.__estimationPolicy = "never"
# initialize control variables
self._parameters = None
self._progress = 0
self._status = "Fitting"
for i in range(self._nSpectra):
self._progress = (i * 100.) / self._nSpectra
try:
self.processSpectrum(i)
except:
_logger.error(
"Error %s processing index = %d", sys.exc_info()[1], i)
if _logger.getEffectiveLevel() == logging.DEBUG:
raise
self.onProcessSpectraFinished()
self._status = "Ready"
if self.progressCallback is not None:
self.progressCallback(self._nSpectra, self._nSpectra)
def processSpectrum(self, i):
self._currentFitStartTime = datetime.datetime.now().isoformat()
self.aboutToGetSpectrum(i)
x, y, sigma, xmin, xmax = self.getFitInputValues(i)
self.fit.setData(x, y, sigma=sigma, xmin=xmin, xmax=xmax)
if self._parameters is None and self.__estimationPolicy != "never":
_logger.debug("First estimation")
self.fit.estimate()
elif self.__estimationPolicy == "always":
_logger.debug("Estimation due to settings")
self.fit.estimate()
else:
_logger.debug("Using user estimation")
self.estimateFinished()
values, chisq, sigmaFromFit, niter, lastdeltachi = self.fit.startFit()
self._currentSigma = abs(sigma + (sigma == 0)) if sigma is not None else\
numpy.sqrt(abs(y) + (y == 0))
self._currentFitEndTime = datetime.datetime.now().isoformat()
self.fitOneSpectrumFinished()
def getFitInputValues(self, index):
"""
Returns the fit parameters x, y, sigma, xmin, xmax
"""
# get y (always a list of 1D arrays)
y = self.curves_y[index]
# get x
if self.curves_x is None:
nValues = y.size
x = numpy.arange(float(nValues))
x.shape = y.shape
self.curves_x = x
elif hasattr(self.curves_x, "shape") and len(self.curves_x.shape) == 1:
# same x array for all curves
x = self.curves_x
else:
# list of abscissas, one per curve
x = self.curves_x[index]
assert x.shape == y.shape
if self.curves_sigma is None:
return x, y, None, self.xMin, self.xMax
# get sigma
if hasattr(self.curves_sigma, "shape") and len(self.curves_sigma.shape) == 1:
# only one sigma for all the y values
sigma = self.curves_sigma
else:
sigma = self.curves_sigma[index]
assert sigma.shape == y.shape
return x, y, sigma, self.xMin, self.xMax
def estimateFinished(self):
_logger.debug("Estimate finished")
def aboutToGetSpectrum(self, idx):
_logger.debug("New spectrum %d", idx)
self._currentFitIndex = idx
if self.progressCallback is not None:
self.progressCallback(idx, self._nSpectra)
def fitOneSpectrumFinished(self):
_logger.debug("fit finished")
# get parameter results
fitOutput = self.fit.getResult(configuration=False)
result = fitOutput['result']
idx = self._currentFitIndex
parNames = [x["name"] for x in self.fit.paramlist]
if idx == 0:
self._referenceParameters = parNames
if self._referenceParameters is not None:
if self._referenceParameters == parNames:
_logger.info("Fit of spectrum %d has same parameters" % idx)
else:
_logger.info("Fit of spectrum %d has different parameters" % idx)
self._referenceParameters = None
if result is None:
_logger.warning("result not valid for index %d", idx)
return
self._appendOneResultToHdf5(resultDict=fitOutput["result"])
def _appendOneResultToHdf5(self, resultDict):
# Get all the necessary data (TODO: pass it to method as attrs)
idx = self._currentFitIndex
end_time = self._currentFitEndTime
start_time = self._currentFitStartTime
sigma = self._currentSigma
legend = self.legends[idx]
xlabel = self.xlabels[idx]
ylabel = self.ylabels[idx]
x, y, _inSigma, xMin, xMax = self.getFitInputValues(idx)
fitted_data = self.fit.evaluateDefinedFunction(x)
configIni = ConfigDict.ConfigDict(self.fit.getConfiguration()).tostring()
fit_paramlist = self.fit.paramlist
filename = self.getOutputFileName()
# Write the data to file (append)
self._entryNameFormat = "fit_%d"
with h5py.File(filename, mode="r+") as h5f:
entry = h5f.create_group(self._entryNameFormat % idx)
entry.attrs["NX_class"] = to_h5py_utf8("NXentry")
entry.attrs["default"] = to_h5py_utf8("fit_process/results/plot")
entry.create_dataset("start_time",
data=to_h5py_utf8(start_time))
entry.create_dataset("end_time", data=to_h5py_utf8(end_time))
entry.create_dataset("title",
data=to_h5py_utf8("Fit of '%s'" % legend))
process = entry.create_group("fit_process")
process.attrs["NX_class"] = to_h5py_utf8("NXprocess")
process.create_dataset("program", data=to_h5py_utf8("pymca"))
process.create_dataset("version", data=to_h5py_utf8(PyMca5.version()))
process.create_dataset("date", data=to_h5py_utf8(end_time))
configuration = process.create_group("configuration")
configuration.attrs["NX_class"] = to_h5py_utf8("NXnote")
configuration.create_dataset("type", data=to_h5py_utf8("text/plain"))
configuration.create_dataset("data", data=to_h5py_utf8(configIni))
configuration.create_dataset("file_name", data=to_h5py_utf8("SimpleFit.ini"))
configuration.create_dataset("description",
data=to_h5py_utf8("Fit configuration"))
results = process.create_group("results")
results.attrs["NX_class"] = to_h5py_utf8("NXcollection")
estimation = results.create_group("estimation")
estimation.attrs["NX_class"] = to_h5py_utf8("NXcollection")
for p in fit_paramlist:
pgroup = estimation.create_group(p["name"])
# constraint code can be an int, convert to str
if numpy.issubdtype(numpy.array(p['code']).dtype,
numpy.integer):
pgroup.create_dataset('code', data=to_h5py_utf8(CONS[p['code']]))
else:
pgroup.create_dataset('code', data=to_h5py_utf8(p['code']))
pgroup.create_dataset('cons1', data=p['cons1'])
pgroup.create_dataset('cons2', data=p['cons2'])
pgroup.create_dataset('estimation', data=p['estimation'])
for key, value in resultDict.items():
if not numpy.issubdtype(type(key), numpy.character):
_logger.debug("skipping key %s (not a text string)", key)
continue
if key == "fittedvalues":
output_key = "parameter_values"
elif key == "parameters":
output_key = "parameter_names"
elif key == "sigma_values":
output_key = "parameter_sigmas"
else:
output_key = key
value_dtype = numpy.array(value).dtype
if numpy.issubdtype(value_dtype, numpy.number) or\
numpy.issubdtype(value_dtype, numpy.bool_):
# straightforward conversion to HDF5
results.create_dataset(output_key,
data=value)
elif numpy.issubdtype(value_dtype, numpy.character):
# ensure utf-8 output
results.create_dataset(output_key,
data=to_h5py_utf8(value))
plot = results.create_group("plot")
plot.attrs["NX_class"] = to_h5py_utf8("NXdata")
plot.attrs["signal"] = to_h5py_utf8("raw_data")
plot.attrs["auxiliary_signals"] = to_h5py_utf8(["fitted_data"])
plot.attrs["axes"] = to_h5py_utf8(["x"])
plot.attrs["title"] = to_h5py_utf8("Fit of '%s'" % legend)
signal = plot.create_dataset("raw_data", data=y)
if ylabel is not None:
signal.attrs["long_name"] = to_h5py_utf8(ylabel)
axis = plot.create_dataset("x", data=x)
if xlabel is not None:
axis.attrs["long_name"] = to_h5py_utf8(xlabel)
if sigma is not None:
plot.create_dataset("errors", data=sigma)
plot.create_dataset("fitted_data", data=fitted_data)
def getOutputFileName(self):
return os.path.join(self.outputDir,
self.outputFileName)
def _isSummaryEntryAcceptable(self):
if self._referenceParameters is not None:
if self._nSpectra > 1:
return True
def _createSummaryEntry(self):
filename = self.getOutputFileName()
with h5py.File(filename, mode="r+") as h5f:
for idx in range(self._nSpectra):
inputEntryName = os.path.join("/", self._entryNameFormat % idx)
inputEntry = h5f[inputEntryName]
start_time = inputEntry["start_time"]
end_time = inputEntry["end_time"]
chisq = inputEntry["fit_process/results/chisq"]
parameterValues = inputEntry["fit_process/results/parameter_values"]
parameterErrors = inputEntry["fit_process/results/parameter_sigmas"]
parameterNames = inputEntry["fit_process/results/parameter_names"]
if idx == 0:
entry = h5f.create_group("fit_summary")
entry.attrs["NX_class"] = u"NXentry"
entry.attrs["default"] = u"result"
entry["start_time"] = to_h5py_utf8(datetime.datetime.now().isoformat())
result = entry.create_group("result")
result.attrs["NX_class"] = u"NXdata"
result.attrs["axes"] = to_h5py_utf8(["index"])
result.attrs["signal"] = to_h5py_utf8("chisq")
result["index"] = numpy.arange(self._nSpectra)
result.create_dataset("chisq",
shape=(self._nSpectra,),
dtype=numpy.float32)
for parameter0 in parameterNames:
parameter = to_utf8(parameter0)
result.create_dataset(parameter,
shape=(self._nSpectra,),
dtype=numpy.float32)
result.create_dataset(parameter + "_errors",
shape=(self._nSpectra,),
dtype=numpy.float32)
result.create_dataset(parameter + "_estimation",
shape=(self._nSpectra,),
dtype=numpy.float32)
result["chisq"][idx] = chisq
for par in range(len(parameterNames)):
parameter = to_utf8(parameterNames[par])
estimationName = "fit_process/results/estimation/%s/estimation" % \
parameter
estimation = inputEntry[estimationName]
result[parameter][idx] = parameterValues[par]
result[parameter + "_errors"][idx] = parameterErrors[par]
result[parameter + "_estimation"][idx] = estimation
entry["end_time"] = to_h5py_utf8(datetime.datetime.now().isoformat())
first = self._entryNameFormat % 0
last = self._entryNameFormat % (self._nSpectra - 1)
entry["title"] = "Summary of %s to %s" % (first, last)
def onProcessSpectraFinished(self):
_logger.debug("All curves processed")
self._status = "Curves Fitting finished"
if self._isSummaryEntryAcceptable():
self._createSummaryEntry()
|