1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2015 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "M. Sanchez del Rio & V.A. Sole - ESRF"
__doc__ = """Processing of XAS data. For the time being, processing is very
basic. For state-of-the-art XAS you should take a look at dedicated packages
like IFEFFIT or Viper/XANES dactyloscope. Hopefully this module can be enhanced
to use those packages if present."""
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import copy
import logging
import numpy
import time
from PyMca5.PyMca import XASNormalization
from PyMca5.PyMca import linalg
try:
from PyMca5.PyMca import _xas
_XAS = True
except ImportError:
_XAS = False
_logger = logging.getLogger(__name__)
def polynom(x, parameters):
if hasattr(x, 'shape'):
output = numpy.zeros(x.shape)
else:
output = 0.0
for i in range(len(parameters)):
output += parameters[i] * pow(x, i)
return output
def victoreen(x, parameters):
return parameters[0] * pow(x, -3) + parameters[1] * pow(x, -4)
def modifiedVictoreen(x, parameters):
return parameters[0] * pow(x, -3) + parameters[1]
def e2k(energy, e0=0.0):
r"""
e2k(energy,e0=0.0): converts from E (eV) to k (A^-1)
note: we use the convention that points with E<e0 will have negative k
"""
codata_ec = numpy.array(1.602176565e-19)
codata_me = numpy.array(9.10938291e-31)
codata_h = numpy.array(6.62606957e-34)
codata_hbar = codata_h/2.0/numpy.pi
#; converts a set in energy to a set in k
#; the negative energies (below edge) are treated as negative k
tmpx = energy - e0
ccte = numpy.sqrt(codata_ec*2*codata_me/codata_hbar/codata_hbar)*1e-10
tmpxx = ((tmpx > 0) * 2-1) * numpy.sqrt(numpy.abs(tmpx)) * ccte
return tmpxx
def k2e(kvalues):
codata_ec = numpy.array(1.602176565e-19)
codata_me = numpy.array(9.10938291e-31)
codata_h = numpy.array(6.62606957e-34)
codata_hbar = codata_h/2.0/numpy.pi
#; converts a set in k to energy
#; the negative energies (below edge) are treated as negative k
ccte = numpy.power(codata_hbar,2) / (2 / codata_me / codata_ec * 1e20)
tmpx = kvalues
tmpx = ((tmpx > 0) * 2-1) * tmpx * tmpx * ccte
return tmpx
def polspl_evaluate(set2,xl,xh,c,nc,nr):
r"""
polspl_evaluate(set2,xl,xh,c,nc,nr): for internal use of postedge
PURPOSE:
evaluate the combined spline fitted from its coefficients.
INPUTS:
set2: the set with the original data
xl,xh arrays contain nr adjacent ranges over which to fit individual polynomials.
c array containing the polynomial coefficients resulting from the fit
nc array that specifies how many poly coeffs to use in each range
nr the number of adjacent ranges
OUTPUTS:
a variable to receive a set with the same abscissas of the input one and
the coordinates evaluated from the fit parameters
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF, February, 1993
2009-05-13 srio@esrf.eu updated doc
2014-12-04 srio@esrf.eu Translated to python
"""
fit = set2*0.0
#;change xl(1) and xh(nr) to extrapolate the fit
xl[1] = numpy.min(set2[0,:])
xh[nr] = numpy.max(set2[0,:])
#;
#; calculatest the first point
#;
xval=set2[0,0]
yval=0.0
for k in range(1,int(nc[1]+1)):
yval = yval+ c[k] * numpy.power(xval,(k-1))
fit[0,0] = xval
fit[1,0] = yval
#;
#; now the rest of the points
#;
if _logger.getEffectiveLevel() == logging.DEBUG:
fit2 = fit *1
for i in range(len(set2[0,:])): # loop over all the points
for j in range(1,int(nr+1)): # loop over the # of intervals
if ((set2[0,i] > xl[j]) and (set2[0,i] <= xh[j])):
cstart=numpy.sum(nc[0:j])
xval = set2[0,i]
yval = 0.0
for k in range(1,int(nc[j]+1)):
yval = yval+ c[cstart+k] * numpy.power(xval,(k-1))
fit2[0,i] = xval
fit2[1,i] = yval
for j in range(1,int(nr+1)): # loop over the # of intervals
idx = (set2[0, :] > xl[j]) & (set2[0,:] <= xh[j])
xval = set2[0, idx]
cstart=numpy.sum(nc[0:j])
yval = 0.0 * xval
for k in range(1,int(nc[j]+1)):
yval += c[cstart+k] * numpy.power(xval,(k-1))
fit[0, idx] = xval
fit[1, idx] = yval
if _logger.getEffectiveLevel() == logging.DEBUG:
_logger.debug("GOOD? = %s", numpy.allclose(fit, fit2))
return fit
def polspl(x,y,w,npts,xl,xh,nr,nc):
r"""
polspl(x,y,w,npts,xl,xh,nr,nc): for internal use of postedge
PURPOSE:
polynomial spline least squares fit to data points Y(I).
only the function and it's first derivative are matched at the knots,
in order to give more degrees of freedom in the fit.
INPUTS:
x(i),i=1,npts abscissas
y(i),i=1,npts ordinates
w(i),i=1,npts weighting factor in least squares fit
fit minimizes the sum of w(i)*(y(i)-poly(x(i)))**2
if uniform weighting is desired, w(i) must be 1.
npts: points in x,y arrays. xl,xh arrays contain NR adjacent ranges
over which to fit individual polynomials. Array nc specifies
how many poly coeffs to use in each range.
OUTPUTS:
array with all coeffs, the first nc(1) of which belong to the first range,
the second nc(2) of which belong to the second range, and so forth.
SIDE EFFECTS:
Quite inefficient, because it uses a lot of loops inherited from
the Fortran code. However, for small set of data it is useful.
PROCEDURE:
(Translated from a Fortran Code)
The method here is to fit ordinary polynomials in X, not B-splines,
in order to save space on a mini-computer. This means that the
is rather poorly conditioned, and hence the limits on the
degree of the polynomial. The method of solution is Lagrange's
undetermined multipliers for the knot constraints and gaussian
elimination to solve the linear system.
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF February, 1993
2014-12-04 srio@esrf.eu Translated to python
this subroutine is a translation of the fortran subroutine
poslpl.for (found in the Frascati's package of EXAFS data analysis)
which header states:
SUBROUTINE POLSPL(X,Y,W,NPTS,XL,XH,NR,C,NC)
C
C POLYNOMIAL SPLINE LEAST SQUARES FIT TO DATA POINTS Y(I).
C ONLY THE FUNCTION AND IT'S FIRST DERIVATIVE ARE MATCHED AT THE KNOTS,
C IN ORDER TO GIVE MORE DEGREES OF FREEDOM IN THE FIT.
C
C X(I),I=1,NPTS ABSCISSAS
C Y(I),I=1,NPTS ORDINATES
C W(I),I=1,NPTS WEIGHTING FACTOR IN LEAST SQUARES FIT
C FIT MINIMIZES THE SUM OF W(I)*(Y(I)-POLY(X(I)))**2
C IF UNIFORM WEIGHTING IS DESIRED, W(I) MUST BE 1.
C
C NPTS POINTS IN X,Y ARRAYS. XL,XH ARRAYS CONTAIN NR ADJACENT RANGES
C OVER WHICH TO FIT INDIVIDUAL POLYNOMIALS. ARRAY NC SPECIFIES
C HOW MANY POLY COEFFS TO USE IN EACH RANGE. ARRAY C RETURNS
C ALL COEFFS, THE FIRST NC(1) OF WHICH BELONG TO THE FIRST RANGE,
C THE SECOND NC(2) OF WHICH BELONG TO THE SECOND RANGE, AND SO FORTH.
C
C THE METHOD HERE IS TO FIT ORDINARY POLYNOMIALS IN X, NOT B-SPLINES,
C IN ORDER TO SAVE SPACE ON A MINI-COMPUTER. THIS MEANS THAT THE
C FIT IS RATHER POORLY CONDITIONED, AND HENCE THE LIMITS ON THE
C DEGREE OF THE POLYNOMIAL. THE METHOD OF SOLUTION IS LAGRANGE'S
C UNDETERMINED MULTIPLIERS FOR THE KNOT CONSTRAINTS AND GAUSSIAN
C ELIMINATION TO SOLVE THE LINEAR SYSTEM.
C
"""
# ;
# ; few definitions
# ;
df = numpy.zeros(26)
a = numpy.zeros((36,37))
nbs = numpy.zeros(11,dtype=int)
xk = numpy.zeros(10)
c = numpy.zeros(36)
j=0
i=0
ne_idl=0
n = 0
k = 0
ibl = 0
ns = 0
ns1 = 0
nbs[1]=1
for i in range(1,nr+1):
n=n+int(nc[i])
nbs[i+1]=n+1
if xl[i] < xh[i]:
pass
else:
t=xl[i]
xl[i]=xh[i]
xh[i]=t
n=n+2*(nr-1)
n1=n+1
xl[nr+1]=0.
xh[nr+1]=0.
# this loop ...
for ibl in range(1,nr+1):
xk[ibl]=.5*(xh[ibl]+xl[ibl+1])
if (xl[ibl] > xl[ibl+1]):
xk[ibl]=.5*(xl[ibl]+xh[ibl+1])
ns=nbs[ibl]
ne_idl=nbs[ibl+1]-1
for i in range(1, npts+1):
if((x[i] < xl[ibl]) or (x[i] > xh[ibl])):
pass
else:
df[ns]=1.0
ns1=ns+1
for j in range(ns1,ne_idl+1):
df[j]=df[j-1]*x[i]
for j in range(ns,ne_idl+1):
for k in range(j,ne_idl+1):
a[j,k]=a[j,k]+df[j]*df[k]*w[i]
a[j,n1]=a[j,n1]+df[j]*y[i]*w[i]
# ... has to be faster
ncol=nbs[nr+1]-1
nk=nr-1
if (nk == 0):
pass
else:
for ik in range(1,nk+1):
ncol=ncol+1
ns=nbs[ik]
ne_idl=nbs[ik+1]-1
a[ns,ncol]=-1.
ns=ns+1
for i in range(ns,ne_idl+1):
a[i,ncol]=a[i-1,ncol]*xk[ik]
ncol=ncol+1
a[ns,ncol]=-1.
ns=ns+1
if (ns > ne_idl):
pass
else:
for i in range(ns,ne_idl+1):
a[i,ncol]=(ns-i-2)*numpy.power(xk[ik],(i-ns+1))
ncol=ncol-1
ns=nbs[ik+1]
ne_idl=nbs[ik+2]-1
a[ns,ncol]=1.0
ns=ns+1
for i in range(ns,ne_idl+1):
a[i,ncol]=a[i-1,ncol]*xk[ik]
ncol=ncol+1
a[ns,ncol]=1.0
ns=ns+1
if (ns > ne_idl):
pass
else:
for i in range(ns,ne_idl+1):
a[i,ncol]=(i-ns+2)*numpy.power(xk[ik],(i-ns+1))
for i in range(1,n+1):
i1=i-1
for j in range(1,i1+1):
a[i,j]=a[j,i]
nm1=n-1
for i in range(1,nm1+1):
i1=i+1
m=i
t=numpy.abs(a[i,i])
for j in range(i1,n+1):
if (t >= numpy.abs(a[j,i])):
pass
else:
m=j
t=numpy.abs(a[j,i])
if (m == i):
pass
else:
for j in range(1,n1+1):
t=a[i,j]
a[i,j]=a[m,j]
a[m,j]=t
for j in range(i1,n+1):
t=a[j,i]/a[i,i]
for k in range(i1,n1+1):
a[j,k]=a[j,k]-t*a[i,k]
c[n]=a[n,n1]/a[n,n]
for i in range(1,nm1+1):
ni=n-i
t=a[ni,n1]
ni1=ni+1
for j in range(ni1,n+1):
t=t-c[j]*a[ni,j]
c[ni]=t/a[ni,ni]
return c
def polspl_test():
r"""
polspl_test(): to test polspl ()
"""
set22 = numpy.loadtxt('set22.dat')
set22 = set22.T
npts = len(set22[1,:])
w = numpy.ones(npts+1)
xx = numpy.zeros(npts+1)
yy = numpy.zeros(npts+1)
#w=w*0.0+1.0
xx[1:npts+1]=set22[0,:]
yy[1:npts+1]=set22[1,:]
xl = numpy.array( [ 0.0000000, 0.0000000, \
7.6354497, 15.270899, 0.0000000,\
0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000 ])
xh = numpy.array( [ 0.0000000, 7.6354497,\
15.270899, 22.906349, 0.0000000, 0.0000000,\
0.0000000, 0.0000000, 0.0000000, 0.0000000 ] )
nc = numpy.array( [ 0.0000000, 4.0000000,\
4.0000000, 4.0000000, 0.0000000, 0.0000000,\
0.0000000, 0.0000000, 0.0000000, 0.0000000 ],
dtype=numpy.int32)
nr = 3
c = polspl(xx,yy,w,npts,xl,xh,nr,nc)
#print("set22.shape",set22.shape)
fit = polspl_evaluate(set22,xl,xh,c,nc,nr)
#print("fit.shape",fit.shape)
#print("c: ",c)
#print("fit: ",fit)
return
def postEdge(set2,kmin=None,kmax=None,polDegree=[3,3,3],knots=None, full=False):
r"""
postEdge(set2,kmin=None,kmax=None,polDegree=[3,3,3],knots=None)
PURPOSE:
This procedure calculates the post edge fit of a xafs spectrum
INPUTS:
set2: input set of data
KEYWORD PARAMETERS:
kmin the bottom limit for the fit (defaults kmin=0)
kmax the upper limit for the fit (defaults max)
OUTPUTS:
a set with the fit
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF
February, 1993
1996-08-13 MSR (srio@esrf.fr) changes wmenu->wmenu2 and
xtext->widget_message
1998-10-01 srio@esrf.fr adapts for delia.
2000-02-12 MSR (srio@esrf.fr) adds Dialog_Parent keyword
2014-12-04 srio@esrf.eu Translated to python
"""
#Note that in/out arrays are numpy way: numpy.array((npoints,2))
xl = numpy.zeros(10)
xh = numpy.zeros(10)
c = numpy.zeros(36)
nc = numpy.zeros(10, numpy.int32)
if len(polDegree) > 10:
_logger.warning("Error: Maximum number of intervals is 10")
_logger.warning(" Number of intervals forced to 10")
polDegree = polDegree[0:9]
x1 = 0.0 # set2[:,0].min()
x2 = set2[:,0].max()
if kmin != None:
x1 = kmin
if kmax != None:
x2 = kmax
xrange1 = [x1,x2]
_logger.debug("++++++++++++++++++%s", xrange1)
if knots not in [None, []]:
if len(knots) == len(polDegree):
if knots[0] > kmin:
knots = [kmin] + list(knots)
elif knots[-1] < kmax:
knots = list(knots) + [kmax]
elif len(knots) == (len(polDegree) - 1):
# probably just given the intermediate knots
if knots[0] > kmin:
knots = [kmin] + list(knots)
if knots[-1] < kmax:
knots = list(knots) + [kmax]
if ( (len(polDegree)+1) != len(knots) ):
_logger.warning("Error: dimension of knots must be dimension of polDegree+1")
_logger.warning(" Forced automatic (equidistant) knot definition.")
knots = None
else:
xrange1 = knots[0],knots[-1]
nr = len(polDegree)
xl[1] = xrange1[0]
xh[nr] = xrange1[1]
for i in range(1,nr+1):
nc[i] = polDegree[i-1] + 1
if knots == None:
step = (xh[nr]-xl[1])/float(nr)
for i in range(1,nr):
xl[i+1] = xl[i] + step
xh[i] = xl[i+1]
else:
for i in range(1,nr):
xl[i+1] = knots[i]
xh[i] = xl[i+1]
#
# select only points in selected interval
#
goodi = (set2[:,0] >= xrange1[0]) & (set2[:,0] <= xrange1[1])
set22 = set2[goodi,:]
_logger.debug(' Number of fitting points: %d', len(set22[:,0]))
_logger.debug(' polynomials used for fitting: %d', nr)
_logger.debug('# degree min max')
for i in range(1,nr+1):
_logger.debug("%d %9d %9.2f %9.2f ",
i, nc[i]-1, xl[i], xh[i])
# ;
# ; call spline
# ;
npts = len(set22[:,0])
w = numpy.ones(npts+1)
xx = numpy.zeros(npts+1)
yy = numpy.zeros(npts+1)
xx[1:] = set22[:,0]
yy[1:] = set22[:,1]
#t0 = time.time()
if _XAS:
c = _xas.polspl(xx,yy,w,npts,xl,xh,nr,nc)
if _logger.getEffectiveLevel() == logging.DEBUG:
t0 = time.time()
c2 = polspl(xx,yy,w,npts,xl,xh,nr,nc)
_logger.debug("polspl elapsed = %s", time.time() - t0)
_logger.debug("OK? %s", numpy.allclose(c, c2))
else:
c = polspl(xx,yy,w,npts,xl,xh,nr,nc)
#TODO: polspl_evaluate receives and returns arrays like IDL (2,npoints)
#t0 = time.time()
fit0 = polspl_evaluate(set2.T,xl,xh,c,nc,nr)
#print("polspl_evaluate elapsed = ", time.time() - t0)
if full:
xNodes = numpy.zeros((nr-1,), dtype=numpy.float32)
yNodes = numpy.zeros((nr-1,), dtype=numpy.float32)
for j in range(1,int(nr)): # loop over the # of intervals
xval = xh[j]
cstart=numpy.sum(nc[0:j])
yval = 0.0
for k in range(1,int(nc[j]+1)):
yval += c[cstart+k] * numpy.power(xval,(k-1))
xNodes[j-1] = xval
yNodes[j-1] = yval
return fit0.T, xNodes, yNodes
else:
return fit0.T
def postEdge0(k, mu, kmin=None, kmax=None, degrees=(3, 3, 3), knots=None, full=False):
set0 = numpy.zeros((k.size, 2), dtype=k.dtype)
set0[:, 0] = k
set0[:, 1] = mu
return postEdge(set0, kmin, kmax, degrees, knots=knots, full=full)
def getFTWindowWeights(tk, window="Gaussian", windpar=0.2, wrange=None):
r"""
window_ftr(setin,window=1,windpar=0.2,wrange=None)
PURPOSE:
This procedure calculates and applies a weighting window to a set
INPUTS:
setin: either:
numpy.array(npoints,ncols) set of data (CASE A)
numpy.array(npoints) array of abscissas (CASE B)
OUTPUT:
depends on the case:
CASE A: numpy.array(npoints,ncol) set with the weigted set (in index [:,1])
CASE B: numpy.array(npoints) the values of the weights
KEYWORD PARAMETERS:
window = kind of window:
0 Gaussian Window (default)
1 Hanning Window
2 Box
3 Parzen (triangular)
4 Welch
5 Hamming
6 Tukey
7 Papul
windpar Parameter for windowing
If WINDOW=(2,3,4,5,6) this sets the width of the apodization (default=0.2)
wrange = [xmin,xmax] the limits of the window. If wrange
is not set, the take the minimum and maximum values
of the abscisas. The window has value zero outside
this interval.
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF
March, 1993
96-08-14 MSR (srio@esrf.fr) adds names keyword.
06-03-14 srio@esrf.fr always exits "names"
2014-12-03 srio@esrf.eu translated to python
;-
"""
names = ['Gaussian', 'Hanning', 'Box','Parzen','Welch',
'Hamming', 'Tukey', 'Papul', 'Kaiser']
if hasattr(window, "lower"):
window = window[0].upper() + window[1:].lower()
else:
window = names[window]
_logger.debug("Using window %s", window)
if wrange == None:
xmax = tk.max()
xmin = tk.min()
else:
xmin = wrange[0]
xmax = wrange[1]
xp = (xmax + xmin) / 2.
xm = xmax - xmin
apo1 = xmin + windpar
apo2 = xmax - windpar
npoint = len(tk)
wind = numpy.ones(npoint, dtype=numpy.float64)
if window in ["Gaussian", "Gauss"]:
wind = numpy.power((tk - xp)/xm, 2)
wind = numpy.exp(-wind * 9.2)
elif window == "Hanning":
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = 0.5*(1.0-numpy.cos(numpy.pi*(tk[i]-xmin)/windpar))
if tk[i] >= apo2:
wind[i] = 0.5*(1.0+numpy.cos(numpy.pi*(tk[i]-apo2)/windpar))
elif window == "Box":
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = 0.0
if tk[i] >= apo2:
wind[i] = 0.0
elif window in ["Parzen", "Triangle", "Triangular"]:
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = (tk[i]-xmin)/windpar
if tk[i] >= apo2:
wind[i] = 1 - (tk[i]-apo2)/windpar
elif window == "Welch":
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = 1.0 - numpy.power( ( (tk[i]-apo1) / windpar), 2)
if tk[i] >= apo2:
wind[i] = 1.0 - numpy.power( (tk[i]-apo2) / windpar, 2 )
elif window == "Hamming":
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = 1.08 - (.54+0.46*numpy.cos(numpy.pi*(tk[i]-xmin)/windpar))
if tk[i] >= apo2:
wind[i] = 1.08 - (.54-0.46*numpy.cos(numpy.pi*(tk[i]-apo2)/windpar))
elif window == "Tukey":
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = 1.0 - numpy.power(numpy.cos(0.5*numpy.pi*(tk[i]-xmin)/windpar),2)
if tk[i] >= apo2:
wind[i] = numpy.power(numpy.cos(-0.5*numpy.pi*(tk[i]-apo2)/windpar),2)
elif window == "Papul":
for i in range(npoint):
if tk[i] <= apo1:
a=(1./numpy.pi)*numpy.sin(numpy.pi*(tk[i]-xmin)/windpar) + \
(1.-(tk[i]-xmin)/windpar)*numpy.cos(numpy.pi*(tk[i]-xmin)/windpar)
wind[i] = 1.0 - a
if tk[i] >= apo2:
a=(1./numpy.pi)*numpy.sin(numpy.pi*(tk[i]-apo2)/windpar) + \
(1.-(tk[i]-apo2)/windpar)*numpy.cos(numpy.pi*(tk[i]-apo2)/windpar)
wind[i] = a
elif _XAS and window in ["Kaiser", "Kasel"]:
wind= (_xas.j0(windpar * numpy.sqrt(1. - 4.0 * pow((tk-xp)/xm, 2))) - 1.0)/ (_xas.j0(windpar) - 1.0)
else:
raise ValueError("Window <%s> not implemented" % window)
return wind
def getFT(k, exafs, npoints=2048, rrange=(0.0, 7.0),
krange=None, kstep=0.02, kweight=0,
window="gaussian", apodization=0.2, wweights=None):
if krange is not None:
idx = (k >= krange[0]) & (k <= krange[1])
k = k[idx]
exafs = exafs[idx]
if wweights is None:
wweights = getFTWindowWeights(k,
window=window,
windpar=apodization,
wrange=krange)
if 0:
set3 = numpy.zeros((k.size, 2), dtype=numpy.float64)
set3[:, 0] = k
set3[:, 1] = exafs * wweights
setFT = exex.fastftr(set3,npoint=npoints,rrange=[0.,7.],kstep=0.02)
# ;
# ; creates the input interpolated values
# ;
interpolatedDataX = numpy.linspace(0.0, npoints-1, npoints) * kstep
interpolatedDataY = numpy.interp( interpolatedDataX , k, wweights * exafs * pow(k, kweight),
left=0.0, right=0.0)
# ; calculates the fft and generates the conjugated variable (rr)
ff = numpy.fft.ifft(interpolatedDataY)
rstep = numpy.pi / npoints / kstep
rr = numpy.linspace(0.0, npoints-1, npoints) * rstep
# ;
# ; prepare the results
# ;
coef = npoints * kstep / numpy.sqrt(numpy.pi) * numpy.sqrt(2.)
f12 = coef*numpy.real(ff) # real part of fft
f13 = coef*numpy.imag(ff)*(-1.) # imaginary part of fft
# ;
# ; cut the results to the selected interval in r (rrange)
# ;
goodi = (rr >= rrange[0]) & (rr <= rrange[1])
f13 = f13[goodi]
f12 = f12[goodi]
f10 = rr[goodi]
f11 = numpy.sqrt( f12*f12 + f13*f13)
# ;
# ; define the result array
# ;
fourier = numpy.zeros((len(f10),4))
fourier[:,0] = f10
fourier[:,1] = f11
fourier[:,2] = f12
fourier[:,3] = f13
#print("OK = ", numpy.allclose(fourier, setFT))
ddict = {}
ddict["Set"] = fourier
ddict["InterpolatedK"] = interpolatedDataX
ddict["InterpolatedSignal"] = interpolatedDataY
ddict["KWeight"] = kweight
ddict["K"] = k
ddict["WindowWeight"] = wweights
ddict["FTRadius"] = f10
ddict["FTIntensity"] = f11
ddict["FTReal"] = f12
ddict["FTImaginary"] = f13
return ddict
def getBackFT(fourier,npoint=4096,krange=[2.0,12.0],rstep=None,rmin=None,rmax=None):
r"""
fastbftr(fourier,npoint=4096,krange=[2.0,12.0],rstep=None,rmin=None,rmax=None)
PURPOSE:
This procedure calculates the Back Fast Fourier Transform of a set
INPUTS:
fourier: a 4 col set with r,modulus,real and imaginary part
of a Fourier Transform of an Exafs spectum, as produced
by FTR or FASTFTR procedures
KEYWORD PARAMETERS:
krange=[kmin,kmax] : range of the conjugated variable for
the transformation (default = [2,15])
npoint= number of points of the the fft calculation (default = 4096)
rstep = when this keyword is set then the fourier set is
interpolated using the indicated value as step. Otherwise
the fourier set is not interpolated.
rmin = the mimimun r for the back fourier filtering
rmax = the maximum r for the back fourier filtering
OUTPUTS:
This procedure returns a 4-columns set (backftr) with
the conjugated variable (k) in column 0, the real part of the
BFT in col 1, the modulus in col 2 and the phase in col 3.
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF March, 1993
98-10-26 srio@esrf.fr uses Dialog_Message for error messages.
20141204 srio@esrf.eu Translated to python
"""
kmin = krange[0]
kmax = krange[1]
npt = len(fourier[:,0])
fou = numpy.zeros((npoint,4))
if rmin == None:
rmin = (fourier[:,0]).min()
if rmax == None:
rmax = (fourier[:,0]).max()
#;
#; fill "fou" set
#;
if rstep == None: #;--- no interpolation
nn = int(npt/2)
rstep = fourier[nn+1,0] - fourier[nn,0]
rstep2 = fourier[nn+2,0] - fourier[nn+1,0]
rdiff = numpy.abs (rstep - rstep2)
_logger.debug(' back rstep = %f', rstep)
_logger.debug(' rdiff = %f', rdiff)
if (rdiff >= 1e-6):
raise ValueError("r griding is not regular; Use rstep keyword -> Abort")
#return fou
ptstart = int(rmin/rstep)
_logger.debug(' ptstart = %d', ptstart)
_logger.debug(' ptstart+npt = %d', ptstart+npt)
fou[ptstart:ptstart+npt,:]=fourier
else: #;--- interpolation
fou[:,0] = numpy.linspace(0,0,npoint-1,npoint)*rstep
fou[:,1] = numpy.interp(fou[:,0],fourier[:,0],fourier[:,1],left=0.0,right=0.0)
fou[:,2] = numpy.interp(fou[:,0],fourier[:,0],fourier[:,2],left=0.0,right=0.0)
fou[:,3] = numpy.interp(fou[:,0],fourier[:,0],fourier[:,3],left=0.0,right=0.0)
#;
#; call back fft
#;
c = fou[:,2] - 1.0j * fou[:,3]
af = numpy.fft.fft(c)
#;
#; create the array of the conjugated variable
#;
kstep = numpy.pi/npoint/rstep
kk = numpy.linspace(0.0,npoint-1,npoint)*kstep
#;
#; prepare the output array
#;
coef = npoint*kstep/numpy.sqrt(numpy.pi)*numpy.sqrt(2.) # coefficienu used for direct fft
coef1 = 2./coef # 2 because we are only
afr = coef1 * af.real # real part of back fft
afi = coef1 * af.imag # imaginary part of back fft
#;
#; cut the results to the selected interval in k (krange)
#;
goodi = (kk >= kmin) & (kk <= kmax)
afr = afr[goodi]
afi = afi[goodi]
afk = kk[goodi]
nptout = len(afr)
#;
#; define the output set
#;
backftr = numpy.zeros((nptout,4))
backftr[:,0] = afk # the conjugated variable (k [A^-1])
backftr[:,1] = afr # the real part of backftr or atra
backftr[:,2] = numpy.sqrt(afr*afr+afi*afi) # the modulus of backftr
backftr[:,3] = numpy.arctan2(afi,afr) # the phase
return backftr
class XASClass(object):
def __init__(self, backend=None):
# This lists are to be updated as larch or any other backend
# is available
self._e0MethodList = ("Manual",
"Auto - No Smooth",
"Auto - 3pt SG",
"Auto - 5pt SG",
"Auto - 7pt SG",
"Auto - 9pt SG")
self._e0MethodDict = {
"Manual": {"function": self._calculateE0, "vars":None, "kw":None},
"Auto - No Smooth": {"function": self._calculateE0,
"vars":None,
"kw":None},
"Auto - 3pt SG": {"function": self._calculateE0, "vars":None, "kw":None},
"Auto - 5pt SG": {"function": self._calculateE0, "vars":None, "kw":None},
"Auto - 7pt SG": {"function": self._calculateE0, "vars":None, "kw":None},
"Auto - 9pt SG": {"function": self._calculateE0, "vars":None, "kw":None}}
# list of polynomials available
self._polynomList = ['Modif. Victoreen',
'Victoreen',
'Constant',
'Linear',
'Parabolic',
'Cubic']
self._polynomDict = {
"Modif. Victoreen":{"function":modifiedVictoreen,
"vars":None,
"kw":None},
"Victoreen":{"function":victoreen, "vars":None, "kw":None},
"Constant":{"function":polynom, "vars":None, "kw":None},
"Linear":{"function":polynom, "vars":None, "kw":None},
"Parabolic":{"function":polynom, "vars":None, "kw":None},
"Cubic":{"function":polynom, "vars":None, "kw":None}}
self._configuration = self.getDefaultConfiguration(backend)
self._processingPending = True
self._energy = None
self._mu = None
def getDefaultConfiguration(self, backend=None):
configuration = {}
if backend in [None, "Default", "DefaultBackend"]:
configuration["DefaultBackend"] = {}
config = configuration["DefaultBackend"]
else:
raise ValueError("Only default backend supported")
config = configuration[backend]
# normalization
# E0 and pre-edge will be used for EXAFS extraction
# PostEdge will only be used for the normalized spectrum
# because EXAFS extraction follows its own methods
# None parameters are to be derived from input spectrum
config["Normalization"] = {}
ddict = config["Normalization"]
ddict["E0Method"] = "Auto - 5pt SG"
ddict["E0Value"] = None
ddict["E0MinValue"] = None
ddict["E0MaxValue"] = None
ddict["JumpNormalizationMethod"] = "Flattened"
ddict["JumpNormalizationMethodList"] = ["Constant", "Flattened"]
# limits to be used (relative to E0)
ddict["PreEdge"] = {}
ddict["PreEdge"] ["Method"] = "Polynomial"
ddict["PreEdge"] ["Polynomial"] = "Linear"
# Regions is a single list with 2 * n values delimiting n regions.
ddict["PreEdge"] ["Regions"] = [-1000., -40.]
ddict["PostEdge"] = {}
ddict["PostEdge"] ["Method"] = "Polynomial"
ddict["PostEdge"] ["Polynomial"] = "Linear"
ddict["PostEdge"] ["Regions"] = [20., 500.]
# EXAFS
config["EXAFS"] = {}
ddict = config["EXAFS"]
# k grid
# None parameters are to be derived from spectrum
ddict["Grid"] = {}
ddict["KMin"] = None
ddict["KMax"] = None
ddict["KWeight"] = 0
ddict["Delta"] = None
ddict["Nodes"] = None
# extraction
ddict["Normalization"] = "Fit"
#ddict["Normalization"] = "Jump"
# Normalization possibilities: Fit, Jump, Extrapolation"
ddict["ExtractionMethod"] = "Knots"
# Implement "Knots", "Victoreen", "Modif. Victoreen"
ddict["Knots"] = {}
ddict["Knots"] ["Number"] = 3
ddict["Knots"] ["Values"] = None
ddict["Knots"] ["Orders"] = [3, 2, 2, 3] # one more than knots
# FT
"""
window = kind of window:
1 Gaussian Window (default)
2 Hanning Window
3 Box
4 Parzen (triangular)
5 Welch
6 Hamming
7 Tukey
8 Papul
windpar Parameter for windowing
If WINDOW=(2,3,4,5,6) this sets the width of the apodization (default=0.2)
wrange = [xmin,xmax] the limits of the window. If wrange
is not set, the take the minimum and maximum values
of the abscisas. The window has value zero outside
this interval.
"""
config["FT"] = {}
ddict = config["FT"]
ddict["Window"] = "Gaussian"
ddict["WindowList"] = ["Gaussian", "Hanning", "Box", "Parzen",
"Welch", "Hamming", "Tukey", "Papul"]
ddict["WindowApodization"] = 0.02
ddict["WindowRange"] = None
ddict["KStep"] = 0.04
ddict["Points"] = 2048
ddict["Range"] = [0.0, 7.0]
# Back-FT
config["BFT"] = {}
ddict = config["BFT"]
ddict["KRange"] = [2.0, 12.0]
ddict["Points"] = 2048
ddict["Range"] = [0.0, 6.0]
return configuration
def setConfiguration(self, configuration, backend=None):
if backend not in [None, "Default", "DefaultBackend"]:
raise ValueError("Only default backend implemented")
else:
if "DefaultBackend" in configuration:
inputConfig = configuration["DefaultBackend"]
else:
inputConfig = configuration
backend = "DefaultBackend"
currentConfig = self.getConfiguration(backend=backend)
newConfiguration = \
self.mergeConfigurationDicts(currentConfig, inputConfig)
self._configuration[backend] = newConfiguration
self._processingPending = True
def mergeConfigurationDicts(self, referenceDict,
inputDict):
destinationDict = {}
referenceKeys = list(referenceDict.keys())
for referenceKey in referenceKeys:
ref = referenceDict[referenceKey]
referenceLower = referenceKey.lower()
treated = False
for key in inputDict:
if key.lower() == referenceLower:
if hasattr(referenceDict[referenceKey], "keys"):
inp = inputDict[key]
destinationDict[referenceKey] = \
self.mergeConfigurationDicts(ref, inp)
else:
destinationDict[referenceKey] = inputDict[key]
treated = True
break
if not treated:
if hasattr(referenceDict[referenceKey], "keys"):
destinationDict[referenceKey] = copy.deepcopy(ref)
else:
destinationDict[referenceKey] = ref
return destinationDict
def getConfiguration(self, backend=None):
if backend not in [None, "Default", "DefaultBackend", "All", "all"]:
raise ValueError("Only default backend implemented")
if backend in ["all", "All"]:
return copy.deepcopy(self._configuration)
else:
return copy.deepcopy(self._configuration["DefaultBackend"])
def setSpectrum(self, energy, mu, units=None, sanitize=True):
self._lastE0CalculationDict = None
energy0 = numpy.array(energy, dtype=numpy.float64, copy=True)
mu0 = numpy.array(mu, dtype=numpy.float64, copy=True)
energy0.shape = -1
mu0.shape = -1
self._equidistant = False
# TODO: This should become a function to be called on its own
# make sure data are sorted
idx = energy.argsort(kind='mergesort')
energy = numpy.take(energy0, idx)
mu = numpy.take(mu0, idx)
# make sure data are strictly increasing
delta = energy[1:] - energy[:-1]
dmin = delta.min()
dmax = delta.max()
if delta.min() <= 1.0e-10:
# force data to be strictly increasing
# although we do not consider last point
idx = numpy.nonzero(delta>0)[0]
energy = numpy.take(energy, idx)
mu = numpy.take(mu, idx)
delta = None
if dmin == dmax:
equidistant = True
else:
equidistant = False
if units is None:
if (energy[-1] - energy[0]) < 10:
units = "keV"
else:
units = "eV"
if units.lower() not in ["kev", "ev"]:
raise ValueError("Unhandled units %s" % units)
elif units.lower() == "kev":
energy *= 1000.
energy0 *= 1000.
# everything went well, update internal variables
self._energy0 = energy0
self._mu0 = mu0
self._energy = energy
self._mu = mu
self._units = units
self._equidistant = equidistant
def processSpectrum(self):
e0 = self.calculateE0()
ddict = self.normalize()
"""
return {"Jump": jump,
"NormalizedEnergy": energy,
"NormalizedMu":normalizedSpectrum,
"NormalizedBackground": data["PreEdge"],
"NormalizedSignal":data["PostEdge"]}
"""
ddict["Energy"] = self._energy
ddict["Mu"] = self._mu
cleanMu = self._mu - ddict["NormalizedBackground"]
kValues = e2k(self._energy - e0)
ddict.update(self.postEdge(kValues, cleanMu))
dataSet = numpy.zeros((cleanMu.size, 2), numpy.float64)
dataSet[:, 0] = kValues
dataSet[:, 1] = cleanMu
# normalization
exafs = (cleanMu - ddict["PostEdgeB"]) / ddict["PostEdgeB"]
ddict["EXAFSEnergy"] = k2e(kValues)
ddict["EXAFSKValues"] = kValues
ddict["EXAFSSignal"] = cleanMu
if ddict["KWeight"]:
exafs *= pow(kValues, ddict["KWeight"])
ddict["EXAFSNormalized"] = exafs
set2 = dataSet * 1
set2[:,1] = exafs
#remove points with k<2
goodi = (set2[:,0] >= ddict["KMin"]) & (set2[:,0] <= ddict["KMax"])
set2 = set2[goodi,:]
#plotSet(set2,xtitle="k [$A^{-1}$]",ytitle="$\chi$", toptitle=" CUCU EXAFS")
# FT
# window
if 0:
set2 = exex.window_ftr(set2,window=8,windpar=3)
setFT = exex.fastftr(set2,npoint=4096,rrange=[0.,7.],kstep=0.02)
else:
#setFT = getFT(set2[:,0], set2[:, 1], npoints=2048,
# krange=(ddict["KMin"], ddict["KMax"]),\
# rrange=[0.,7.],kstep=0.02)
setFT = self.fourierTransform(set2[:,0], set2[:, 1], kMin=ddict["KMin"], kMax=ddict["KMax"])
ddict["FT"] = setFT
if 0:
# BFT
setBFT = getBackFT(setFT["Set"],rmin=1.0,rmax=3.0,krange=[2.0,20.0])
ddict["BFT"] = setBFT
return ddict
def fourierTransform(self, k, mu, kMin=None, kMax=None, backend=None):
if backend not in [None, "Default", "DefaultBackend"]:
raise ValueError("Only default backend implemented")
else:
backend = "DefaultBackend"
config = self._configuration[backend]["FT"]
if kMin is None:
kMin = k.min()
if kMax is None:
kMax = k.max()
kRange = config["WindowRange"]
if config["WindowRange"] in [None, "None"]:
kRange = [kMin, kMax]
else:
kRange = [max(kRange[0], kMin), min(kRange[1], kMax)]
return getFT(k, mu, npoints=config["Points"],
krange=kRange,\
window=config.get("Window", "Gaussian"),
apodization=config.get("WindowApodization", 0.02),
rrange=config["Range"],
kstep=config["KStep"])
def postEdge(self, k, mu, backend=None):
if backend not in [None, "Default", "DefaultBackend"]:
raise ValueError("Only default backend implemented")
else:
backend = "DefaultBackend"
config = self._configuration[backend]["EXAFS"]
method = config["ExtractionMethod"]
# Grid
kMin = config["KMin"]
kMax = config["KMax"]
kWeight = config["KWeight"]
if kMin is None:
kMin = 2
if kMax is None:
kMax = k.max()
else:
kMax = min(k.max(), kMax)
number = config["Knots"].get("Number", 0)
if number == 0:
knots = None
if not hasattr(config["Knots"]["Orders"], "__len__"):
config["Knots"]["Orders"] = [config["Knots"]["Orders"]]
else:
knots = config["Knots"]["Values"]
if not hasattr(knots, "__len__"):
knots = [knots]
fit0, xNodes, yNodes = postEdge0(k, mu, kMin, kMax,
config["Knots"]["Orders"],
knots=knots, full=True)
ddict = {}
ddict["PostEdgeK"] = fit0[:, 0]
ddict["PostEdgeB"] = fit0[:, 1]
ddict["KnotsX"] = xNodes
ddict["KnotsY"] = yNodes
ddict["KMin"] = kMin
ddict["KMax"] = kMax
ddict["KWeight"] = kWeight
# TODO: add polynomials?
return ddict
def calculateE0(self, energy=None, mu=None, backend=None):
self._lastE0CalculationDict = None
if energy is None:
energy = self._energy
if mu is None:
mu = self._mu
if backend not in [None, "Default", "DefaultBackend"]:
raise ValueError("Only default backend implemented")
else:
backend = "DefaultBackend"
config = self._configuration[backend]["Normalization"]
method = config["E0Method"]
fun = self._e0MethodDict[method]["function"]
varList = self._e0MethodDict[method]["vars"]
kwDict = self._e0MethodDict[method]["kw"]
if (varList is None) and (kwDict is None):
outputDict = fun(energy, mu, config)
elif varList is None:
outputDict = fun(energy, mu, config, **kwDict)
else:
outputDict = fun(energy, mu, config, *varList)
return outputDict["edge"]
def _calculateE0(self, energy, mu, config):
method = config["E0Method"]
methodLower = method.lower()
e0 = config["E0Value"]
eMin = config["E0MinValue"]
eMax = config["E0MaxValue"]
if eMin is None:
eMin = energy.min()
if eMax is None:
eMax = energy.max()
if (e0 is None) and methodLower.endswith("manual"):
raise ValueError("Edge energy not set")
if (id(energy) == id(self._energy)) and self._equidistant:
# data do not need to be interpolated
_logger.debug("NO INTERPOLATION")
eWork = energy
muWork = mu
else:
nWorkingPoints = 10 * energy.size
eWork = numpy.linspace(energy[1], energy[-2], nWorkingPoints)
muWork = numpy.interp(eWork, energy, mu, mu[0], mu[-1])
eWork.shape = -1
muWork.shape = -1
methodLower = method.lower()
if methodLower.endswith("manual"):
return {"edge":e0}
elif methodLower.endswith("no smooth"):
idx = numpy.gradient(muWork).argmax()
return eWork[idx]
elif methodLower.endswith("3pt sg"):
npoints = 3
elif methodLower.endswith("5pt sg"):
npoints = 5
elif methodLower.endswith("7pt sg"):
npoints = 7
elif methodLower.endswith("9pt sg"):
npoints = 9
else:
raise ValueError("Method <%s> not implemented" % method)
# Returning dictionary can contain:
# The edge energy (mandatory)
# The interpolated spectrum (if any)
# The derivative spectrum (if any)
ddict = XASNormalization.getE0SavitzkyGolay(eWork, muWork, \
points=npoints, full=True)
self._lastE0CalculationDict = ddict
return ddict
def _getRegionsData(self, x0, y0, regions):
x = x0[:]
y = y0[:]
x.shape = -1
y.shape = -1
i = 0
for region in regions:
xmin, xmax = region
toidx = numpy.nonzero((x >=xmin) & (x <= xmax))[0]
if i == 0:
i = 1
idx = toidx
else:
idx = numpy.concatenate((idx, toidx), axis = 0)
xOut = numpy.take(x, idx)
yOut = numpy.take(y, idx)
return xOut, yOut
def normalize(self, energy=None, mu=None, backend=None):
if energy is None:
energy = self._energy
else:
self._lastE0CalculationDict = None
if mu is None:
mu = self._mu
else:
self._lastE0CalculationDict = None
if backend not in [None, "Default", "DefaultBackend"]:
raise ValueError("Only default backend implemented")
else:
backend = "DefaultBackend"
config = self._configuration[backend]["Normalization"]
# reference values
eMin = energy.min()
eMax = energy.max()
# e0
if self._lastE0CalculationDict is None:
e0 = self.calculateE0(energy, mu, backend=backend)
else:
e0 = self._lastE0CalculationDict["edge"]
parameters = {}
data = {}
for key in ["PreEdge", "PostEdge"]:
# pre-edge
# Regions is a single list with 2 * n values delimiting n regions.
regions = config [key] ["Regions"]
edgeMethod = config[key]["Method"]
if edgeMethod.lower() != "polynomial":
raise ValueError("Only normalization with polynomials implemented")
method = config[key]["Polynomial"]
methodLower = method.lower()
if regions is None:
if key == "PreEdge":
regions = [-1000., -40.]
else:
regions = [20., 1000.]
workingRegions = []
if key == "PreEdge":
plotMin = eMax
for i in range(0, len(regions), 2):
vMin = e0 + regions[2 * i]
vMax = e0 + regions[2 * i + 1]
if vMin < eMin:
vMin = eMin
if vMax < eMin:
vMax = 0.5 * (eMin + e0)
if vMin < plotMin:
plotMin = vMin
workingRegions.append([vMin, vMax])
else:
plotMax = eMin
for i in range(0, len(regions), 2):
vMin = e0 + regions[2 * i]
vMax = e0 + regions[2 * i + 1]
if vMin > eMax:
vMin = 0.5 * (e0 + eMax)
if vMax < eMin:
vMax = eMax
if vMax > plotMax:
plotMax = vMax
workingRegions.append([vMin, vMax])
x, y = self._getRegionsData(energy, mu, workingRegions)
if methodLower == "constant":
modelMatrix = numpy.ones((x.size, 1), numpy.float64)
#parameters[key] = y.mean()
elif methodLower == "linear":
modelMatrix = numpy.empty((x.size, 2), numpy.float64)
modelMatrix[:, 0] = 1.0
modelMatrix[:, 1] = x
elif methodLower == "parabolic":
modelMatrix = numpy.empty((x.size, 3), numpy.float64)
modelMatrix[:, 0] = 1.0
modelMatrix[:, 1] = x
modelMatrix[:, 2] = pow(x, 2)
elif methodLower == "cubic":
modelMatrix = numpy.empty((x.size, 4), numpy.float64)
modelMatrix[:, 0] = 1.0
modelMatrix[:, 1] = x
modelMatrix[:, 2] = pow(x, 2)
modelMatrix[:, 3] = pow(x, 3)
elif methodLower == "victoreen":
modelMatrix = numpy.empty((x.size, 2), numpy.float64)
modelMatrix[:,0] = pow(x, -3)
modelMatrix[:,1] = pow(x, -4)
elif methodLower == "modif. victoreen":
modelMatrix = numpy.empty((x.size, 2), numpy.float64)
modelMatrix[:,0] = pow(x, -3)
modelMatrix[:,1] = 1.0
else:
raise ValueError("Unhandled %s polynomial <%s> " % \
(key, config[key]["Polynomial"]))
# if only one point has been picked from region
if len(y) == 1:
if methodLower != 'constant':
_logger.warning('Only one data point in region, '
'assuming constant function.')
parameters[key] = y
else:
parameters[key] = linalg.lstsq(modelMatrix, y,
uncertainties=False, weight=False)[0]
fun = self._polynomDict[method]["function"]
if key == "PreEdge":
funPre = fun
data[key] = fun(energy, parameters[key])
jump = fun(e0, parameters["PostEdge"]) - \
funPre(e0, parameters["PreEdge"])
#normalizedSpectrum = (mu - data["PreEdge"])/(data["PostEdge"]
jumpMethod = config.get("JumpNormalizationMethod", "Flattened")
normalizedSpectrum = (mu - data["PreEdge"])/jump
if jumpMethod in [0, "Constant", "constant"]:
jumpMethod = "Constant"
pass
elif jumpMethod in [1, "Flattened", "flattened", "Flatten", "flatten"]:
jumpMethod = "Flattened"
i = numpy.argmin(energy < e0)
normalizedSpectrum[i:] *= (jump / \
(data["PostEdge"] - data["PreEdge"])[i:])
else:
_logger.warning("WARNING: Undefined jump normalization method. Assume Flattened")
jumpMethod = "Flattened"
i = numpy.argmin(energy < e0)
normalizedSpectrum[i:] *= (jump / \
(data["PostEdge"] - data["PreEdge"])[i:])
return {"Jump": jump,
"JumpNormalizationMethod":jumpMethod,
"Edge":e0,
"NormalizedEnergy": energy,
"NormalizedMu":normalizedSpectrum,
"NormalizedBackground": data["PreEdge"],
"NormalizedSignal":data["PostEdge"],
"NormalizedPlotMin": plotMin,
"NormalizedPlotMax":plotMax}
if __name__ == "__main__":
import os
import sys
from PyMca5.PyMcaIO import specfilewrapper as specfile
from PyMca5.PyMcaDataDir import PYMCA_DATA_DIR
if len(sys.argv) > 1:
fileName = sys.argv[1]
else:
fileName = os.path.join(PYMCA_DATA_DIR, "EXAFS_Ge.dat")
if len(sys.argv) > 2:
cfg = sys.argv[2]
else:
cfg = None
scan = specfile.Specfile(fileName)[0]
data = scan.data()
if data.shape[0] == 2:
energy = data[0, :]
mu = data[1, :]
else:
energy = None
mu = None
labels = scan.alllabels()
i = 0
for label in labels:
if label.lower() == "energy":
energy = data[i, :]
elif label.lower() in ["counts", "mu", "absorption"]:
mu = data[i, :]
i = i + 1
if (energy is None) or (mu is None):
if len(labels) == 3:
if labels[0].lower() == "point":
energy = data[1, :]
mu = data[2, :]
else:
energy = data[0, :]
mu = data[1, :]
else:
energy = data[0, :]
mu = data[1, :]
exafs = XASClass()
if cfg is not None:
from PyMca5.PyMca import ConfigDict
config = ConfigDict.ConfigDict()
config.read(cfg)
exafs.setConfiguration(config['XASParameters'])
exafs.setSpectrum(energy, mu)
if 0:
print("exafs.calculateE0 = ", exafs.calculateE0())
ddict = exafs.normalize()
print("Jump = ", ddict["Jump"])
else:
t0 = time.time()
ddict = exafs.processSpectrum()
print("Elapsed = ", time.time() - t0)
#sys.exit()
from PyMca5.PyMca import PyMcaQt as qt
app = qt.QApplication([])
from silx.gui.plot import Plot1D
w = Plot1D()
w.addCurve(energy, mu, legend="original")
w.addCurve(ddict["NormalizedEnergy"],
ddict["NormalizedMu"], legend="Mu", yaxis="right")
w.addCurve(ddict["NormalizedEnergy"],
ddict["NormalizedSignal"], legend="Post")
w.addCurve(ddict["NormalizedEnergy"],
ddict["NormalizedBackground"], legend="Pre")
w.resetZoom()
w.show()
exafs = Plot1D()
idx = (ddict["EXAFSKValues"] >= ddict["KMin"]) & \
(ddict["EXAFSKValues"] <= ddict["KMax"])
exafs.addCurve(ddict["EXAFSKValues"][idx], ddict["EXAFSNormalized"][idx],
legend="Normalized EXAFS")
exafs.show()
#"""
ft = Plot1D()
ft.addCurve(ddict["FT"]["FTRadius"], ddict["FT"]["FTIntensity"])
ft.resetZoom()
ft.show()
#"""
app.exec()
|