File: XASNormalization.py

package info (click to toggle)
pymca 5.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 44,392 kB
  • sloc: python: 155,456; ansic: 15,843; makefile: 116; sh: 73; xml: 55
file content (499 lines) | stat: -rw-r--r-- 19,206 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2022 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF"
__doc__ = """This set of routines performs normalization of X-ray absorption
spectra for qualitative/preliminary analysis. For state-of-the-art XAS you
should take a look at dedicated and well-tested packages like IFEFFIT or
Viper/XANES dactyloscope """
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"

import numpy
import logging
from PyMca5.PyMcaMath.fitting import SpecfitFuns
from PyMca5.PyMcaMath import SGModule
from PyMca5.PyMcaMath.fitting.Gefit import LeastSquaresFit
_logger = logging.getLogger(__name__)

if _logger.getEffectiveLevel() == logging.DEBUG:
    from pylab import *


def e2k(energy, e0=0.0, units="eV"):
    r"""
        e2k(energy, e0=0.0): converts from E (eV) to k (A^-1)
        note: we use the convention that points with E<e0 will have negative k
    """
    energy = numpy.array(energy, copy=False, dtype=numpy.float64)
    if units.lower() != "ev":
        energy *= 1000.
        e0 *= 1000.
    codata_ec = numpy.array(1.602176565e-19)
    codata_me = numpy.array(9.10938291e-31)
    codata_h = numpy.array(6.62606957e-34)
    codata_hbar = codata_h/2.0/numpy.pi
    #; converts a set in energy to a set in k
    #; the negative energies (below edge) are treated as negative k
    tmpx = energy - e0
    ccte = numpy.sqrt(codata_ec*2*codata_me/codata_hbar/codata_hbar)*1e-10
    tmpxx = ((tmpx > 0) * 2-1) * numpy.sqrt(numpy.abs(tmpx)) * ccte
    return tmpxx

def k2e(kValues):
    r"""
        k2e(x): converts from k (A^-1) to E (eV)
        The negative energies (below edge) are treated as negative k
    """
    codata_ec = numpy.array(1.602176565e-19)
    codata_me = numpy.array(9.10938291e-31)
    codata_h = numpy.array(6.62606957e-34)
    codata_hbar = codata_h/2.0/numpy.pi

    #; converts a set in k to energy
    #; the negative energies (below edge) are treated as negative k
    ccte = numpy.power(codata_hbar,2) / 2 / codata_me / codata_ec * 1e20
    tmpx = kValues
    tmpx = ((tmpx > 0) * 2-1) * tmpx * tmpx * ccte
    return tmpx

def polynom(parameter_list, x):
    if hasattr(x, 'shape'):
        output = numpy.zeros(x.shape)
    else:
        output = 0.0
    for i in range(len(parameter_list)):
        output += parameter_list[i] * pow(x, i)
    return output

def polynomDerivative(parameter_list, parameter_index, x):
    return pow(x, parameter_index)

def victoreen(parameter_list, x):
    return parameter_list[0] * pow(x, -3) + parameter_list[1] * pow(x, -4)

def victoreenDerivative(parameter_list, parameter_index, x):
    if parameter_index == 0:
        return pow(x, -3)
    else:
        return pow(x, -4)

def modifiedVictoreen(parameter_list, x):
    return parameter_list[0] * pow(x, -3) + parameter_list[1]

def modifiedVictoreenDerivative(parameter_list, parameter_index, x):
    if parameter_index == 0:
        return pow(x, -3)
    else:
        return numpy.ones(x.shape, dtype=numpy.float64)

def getE0SavitzkyGolay(energy, mu, points=5, full=False):
    # It does not check anything, data have to be prepared before!!!
    # take the first derivative
    yPrime = SGModule.getSavitzkyGolay(mu, npoints=points, degree=2, order=1)
    xPrime = energy[:]

    # get the index at maximum value
    iMax = numpy.argmax(yPrime)

    # get the center of mass
    w = points
    selection = yPrime[iMax-w:iMax+w+1]
    edge = (selection * xPrime[iMax-w:iMax+w+1]).sum(dtype=numpy.float64)/\
           selection.sum(dtype=numpy.float64)

    if full:
        # return intermediate information
        return {"edge":edge,
                "iMax": iMax,
                "xPrime": xPrime,
                "yPrime": yPrime}
    else:
        # return the corresponding x value
        return edge


def estimateXANESEdge(spectrum, energy=None, npoints=5, full=False,
                      sanitize=True):
    if sanitize:
        if energy is None:
            energy = numpy.arange(len(spectrum))
        x = numpy.array(energy, dtype=numpy.float64, copy=False)
        y = numpy.array(spectrum, dtype=numpy.float64, copy=False)
        # make sure data are sorted
        idx = energy.argsort(kind='mergesort')
        x = numpy.take(energy, idx)
        y = numpy.take(spectrum, idx)

        # make sure data are strictly increasing
        delta = x[1:] - x[:-1]
        dmin = delta.min()
        dmax = delta.max()
        if delta.min() <= 1.0e-10:
            # force data are strictly increasing
            # although we do not consider last point
            idx = numpy.nonzero(delta>0)[0]
            x = numpy.take(x, idx)
            y = numpy.take(y, idx)
            delta = None

        # use a regularly spaced spectrum
        if dmax != dmin:
            # choose the number of points or deduce it from
            # the input data length?
            nchannels = 10 * x.size
            xi = numpy.linspace(x[1], x[-2], nchannels).reshape(-1, 1)
            x.shape = -1
            y.shape = -1
            y = SpecfitFuns.interpol([x], y, xi, y.min())
            x = xi
    else:
        # take views
        x = energy[:]
        y = spectrum[:]

    x.shape = -1
    y.shape = -1

    # Sorted and regularly spaced values
    sortedX = x
    sortedY = y    

    ddict = getE0SavitzkyGolay(sortedX,
                               sortedY,
                               points=npoints,
                               full=full)
    if full:
        # return intermediate information
        return ddict["edge"], sortedX, sortedY, ddict["xPrime"], ddict["yPrime"]
    else:
        # return the corresponding x value
        return ddict

def getRegionsData(x0, y0, regions, edge=0.0):
    """
    x - 1D array
    y - 1D array of the same dimension as x
    regions - List of (xmin, xmax) values defining the regions.
    edge - Supplied edge energy
           The default is 0. That means regions are absolute energies.
           The actual regions are defined as (xmin + edge, xmax + edge)
    """
    # take a view of the data
    x = x0[:]
    y = y0[:]

    x.shape = -1
    y.shape = -1

    i = 0
    for region in regions:
        xmin = region[0] + edge
        xmax = region[1] + edge
        toidx = numpy.nonzero((x >= xmin) & (x <= xmax))[0]
        if i == 0:
            i = 1
            idx = toidx
        else:
            idx = numpy.concatenate((idx, toidx), axis=0)

    xOut = numpy.take(x, idx)
    yOut = numpy.take(y, idx)

    if len(x0.shape) == 1:
        xOut.shape = -1
        yOut.shape = -1
    elif x0.shape[0] == 1:
        xOut.shape = 1, -1
        yOut.shape = 1, -1
    else:
        xOut.shape = -1, 1
        yOut.shape = -1, 1

    return xOut, yOut

def XASNormalization(spectrum,
                     energy=None,
                     edge=None,
                     pre_edge_regions=None,
                     post_edge_regions=None,
                     algorithm='polynomial',
                     algorithm_parameters=None):
    if algorithm not in SUPPORTED_ALGORITHMS:
        raise ValueError("Unsupported algorithm %s" % algorithm)
    if energy is None:
        energy = numpy.arange(len(spectrum))
    if edge in [None, 'Auto']:
        edge = estimateXANESEdge(spectrum, energy=energy)

    if pre_edge_regions is None:
        # divide pre-edge zone in 4 regions and take the 3rd?
        if edge < 200:
            # data assumed to be in keV
            pre_edge_regions = [[-0.4, -0.05]]
        else:
            # data assumend to be in eV
            pre_edge_regions = [[-400., -50.]]

    if post_edge_regions is None:
        #divide post-edge by 20 and leave out the first one?
        if edge < 200:
            # data assumed to be in keV
            post_edge_regions = [[0.020, energy.max()-edge]]
        else:
            # data assumend to be in eV
            post_edge_regions = [[20., energy.max()-edge]]

    return SUPPORTED_ALGORITHMS[algorithm](spectrum,
                                           energy,
                                           edge,
                                           pre_edge_regions,
                                           post_edge_regions,
                                           parameters=algorithm_parameters)

def XASPolynomialNormalization(spectrum,
                             energy,
                             edge=None,
                             pre_edge_regions=None,
                             post_edge_regions=None,
                             parameters=None):
    if edge in [None, 'Auto']:
        edge = estimateXANESEdge(spectrum, energy=energy)
    if parameters is None:
        parameters = {}
    pre_edge_order = parameters.get('pre_edge_order', 1)
    post_edge_order = parameters.get('post_edge_order', 3)

    xPre, yPre = getRegionsData(energy, spectrum, pre_edge_regions, edge=edge)
    xPost, yPost = getRegionsData(energy, spectrum, post_edge_regions, edge=edge)

    # get the proper pre-edge function to be used
    pre_edge_function = polynom
    if pre_edge_order in [0, 'Constant']:
        pre_edge_order = 0
    elif pre_edge_order in [1, 'Linear']:
        pre_edge_order = 1
    elif pre_edge_order in [2, 'Parabolic']:
        pre_edge_order = 2
    elif pre_edge_order in [3, 'Cubic']:
        pre_edge_order = 3
    elif pre_edge_order in [-1, 'Victoreen']:
        pre_edge_order = -1
        pre_edge_function = victoreen
    elif pre_edge_order in [-2, 'Modif. Victoreen']:
        pre_edge_order = -2
        pre_edge_function = modifiedVictoreen
    else:
        # case of arriving with a 4th order polynom, for instance
        pass

    # calculate pre-edge
    if pre_edge_order == 0:
        prePol = [yPre.mean()]
    elif pre_edge_order > 0:
        p = numpy.arange(pre_edge_order + 1).astype(numpy.float64)
        prePol = LeastSquaresFit(pre_edge_function, p,
                                 xdata=xPre, ydata=yPre,
                                 model_deriv=polynomDerivative,
                                 weightflag=0, linear=1)[0]
    elif pre_edge_order == -1:
        p = numpy.array([1.0, 1.0])
        prePol = LeastSquaresFit(pre_edge_function, p,
                                 xdata=xPre, ydata=yPre,
                                 model_deriv=victoreenDerivative,
                                 weightflag=0, linear=1)[0]
    elif pre_edge_order == -2:
        p = numpy.array([1.0, 1.0])
        prePol = LeastSquaresFit(pre_edge_function, p,
                                 xdata=xPre, ydata=yPre,
                                 model_deriv=modifiedVictoreenDerivative,
                                 weightflag=0, linear=1)[0]

    # get the proper post-edge function to be used
    post_edge_function = polynom
    if post_edge_order in [0, 'Constant']:
        post_edge_order = 0
    elif post_edge_order in [1, 'Linear']:
        post_edge_order = 1
    elif post_edge_order in [2, 'Parabolic']:
        post_edge_order = 2
    elif post_edge_order in [3, 'Cubic']:
        post_edge_order = 3
    elif post_edge_order in [-1, 'Victoreen']:
        post_edge_order = -1
        post_edge_function = victoreen
    elif post_edge_order in [-2, 'Modif. Victoreen']:
        post_edge_order = -2
        post_edge_function = modifiedVictoreen
    else:
        # case of arriving with a 4th order polynom, for instance
        pass

    # calculate post-edge
    baseLine = pre_edge_function(prePol, xPost)
    if post_edge_order == 0:
        # just take the average
        postPol = [(yPost-baseLine).mean()]
        normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))/postPol[0]
    elif post_edge_order > 0:
        p = numpy.arange(post_edge_order + 1).astype(numpy.float64)
        postPol = LeastSquaresFit(post_edge_function, p,
                                  xdata=xPost,
                                  ydata=yPost-baseLine,
                                  model_deriv=polynomDerivative,
                                  weightflag=0, linear=1)[0]
        normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\
                             /post_edge_function(postPol, energy)
    elif post_edge_order == -1:
        p = numpy.array([1.0, 1.0])
        postPol = LeastSquaresFit(post_edge_function, p,
                                  xdata=xPost,
                                  ydata=yPost-baseLine,
                                  model_deriv=victoreenDerivative,
                                  weightflag=0, linear=1)[0]
        normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\
                             /post_edge_function(postPol, energy)
    elif post_edge_order == -2:
        p = numpy.array([1.0, 1.0])
        postPol = LeastSquaresFit(post_edge_function, p,
                                  xdata=xPost,
                                  ydata=yPost-baseLine,
                                  model_deriv=modifiedVictoreenDerivative,
                                  weightflag=0, linear=1)[0]
        normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\
                             /post_edge_function(postPol, energy)
    jump = post_edge_function(postPol, edge)
    if _logger.getEffectiveLevel() == logging.DEBUG:
        plot(energy, spectrum, 'o')
        plot(xPre, pre_edge_function(prePol, xPre), 'r')
        plot(xPost, post_edge_function(postPol, xPost)+pre_edge_function(prePol, xPost), 'y')
        show()
    return energy, normalizedSpectrum, edge, jump, pre_edge_function, prePol, post_edge_function, postPol

def XASVictoreenNormalization(spectrum,
                              energy,
                              edge=None,
                              pre_edge_regions=None,
                              post_edge_regions=None,
                              parameters=None):

    if edge in [None, 'Auto']:
        edge = estimateXANESEdge(spectrum, energy=energy)

    if parameters is None:
        parameters = {}

    xPre, yPre = getRegionsData(energy, spectrum, pre_edge_regions)
    xPost, yPost = getRegionsData(energy, spectrum, post_edge_regions)


    pre_edge_order = parameters.get('pre_edge_order', 1)
    post_edge_order = parameters.get('post_edge_order', 1)
    if pre_edge_order in [1, -1, 'Victoreen']:
        pre_edge_function = victoreen
    else:
        pre_edge_function = modifiedVictoreen

    if post_edge_order in [1, -1, 'Victoreen']:
        post_edge_function = victoreen
    else:
        post_edge_function = modifiedVictoreen

    p = numpy.array([1.0, 1.0])
    prePol = LeastSquaresFit(pre_edge_function, p, xdata=xPre, ydata=yPre,
                                 weightflag=0, linear=1)[0]
    postPol = LeastSquaresFit(post_edge_function, p,
                              xdata=xPost,
                              ydata=yPost-pre_edge_function(prePol, xPost),
                              weightflag=0, linear=1)[0]
    normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\
                         /post_edge_function(postPol, energy)
    if _logger.getEffectiveLevel() == logging.DEBUG:
        _logger.info("VICTOREEN")
        plot(energy, spectrum, 'o')
        plot(xPre, pre_edge_function(prePol, xPre), 'r')
        plot(xPost,
             post_edge_function(postPol, xPost)+pre_edge_function(prePol, xPost), 'y')
        show()
    return energy, normalizedSpectrum, edge

SUPPORTED_ALGORITHMS = {"polynomial":XASPolynomialNormalization,
                        "victoreen": XASVictoreenNormalization}

if __name__ == "__main__":
    import sys
    from PyMca.PyMcaIO import specfilewrapper as specfile
    import time
    sf = specfile.Specfile(sys.argv[1])
    scan = sf[0]
    data = scan.data()
    energy = data[0, :]
    spectrum = data[1, :]
    n = 100
    t0 = time.time()
    for i in range(n):
        edge = estimateXANESEdge(spectrum+i, energy=energy)
    print("EDGE ELAPSED = ", (time.time() - t0)/float(n))
    print("EDGE = %f"  % edge)
    if _logger.getEffectiveLevel() == logging.DEBUG:
        n = 1
    else:
        n = 100
    t0 = time.time()
    for i in range(n):
        nEne0, nSpe0 = XASNormalization(spectrum+i, energy,
                                        edge=edge,
                                        algorithm='polynomial',
                                        algorithm_parameters={'pre_edge_order':0,
                                                              'post_edge_order':0})[0:2]
    print("ELAPSED 0 = ", (time.time() - t0)/float(n))
    t0 = time.time()
    for i in range(n):
        nEneP, nSpeP = XASNormalization(spectrum+i,
                                        energy,
                                        edge=edge,
                                        algorithm='polynomial',
                                        algorithm_parameters={'pre_edge_order':1,
                                                              'post_edge_order':2})[0:2]
    print("ELAPSED Poly = ", (time.time() - t0)/float(n))
    t0 = time.time()
    for i in range(n):
        nEneV, nSpeV = XASNormalization(spectrum+i,
                                        energy,
                                        edge=edge,
                                        algorithm='polynomial',
                                        algorithm_parameters={'pre_edge_order':'Victoreen',
                                                              'post_edge_order':'Victoreen'})[0:2]
    print("ELAPSED Victoreen = ", (time.time() - t0)/float(n))
    if _logger.getEffectiveLevel() == logging.DEBUG:
        #plot(energy, spectrum, 'b')
        plot(nEne0, nSpe0, 'k', label='Polynomial')
        plot(nEneP, nSpeP, 'b', label='Polynomial')
        plot(nEneV, nSpeV, 'r', label='Victoreen')
        show()