1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2014 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "Ana Sancho Tomas and V.A. Sole"
__license__ = "MIT"
__doc__ = """This module corrects fuorescence XAS spectra for selfattenuation.
The implemented algorithm is valid for infinite samples. For state-of-the-art
XAS analysis you should take a look at dedicated and well-tested packages like
IFEFFIT or Viper/XANES dactyloscope """
import copy
import numpy
from PyMca5.PyMcaIO import ConfigDict
from PyMca5.PyMcaPhysics.xrf import Elements
def isValidConfiguration(configuration):
return True, "OK"
class XASSelfattenuationCorrection(object):
def __init__(self, configuration=None):
self.setConfiguration(configuration)
def setConfiguration(self, configuration):
if configuration is None:
self._configuration = None
return
good, message = isValidConfiguration(configuration)
if not good:
raise RuntimeError(message)
elif good and self._configuration in [None, {}]:
self._configuration = copy.deepcopy(configuration)
else:
keyList = list(self._configuration.keys())
for key in keyList:
if key in configuration.keys():
self._configuration[key] = copy.deepcopy(configuration[key])
def getConfiguration(self):
return copy.deepcopy(self._configuration)
def loadConfiguration(self, filename):
ddict = ConfigDict.ConfigDict()
ddict.read(filename)
self.setConfiguration(ddict)
def saveConfiguration(self, filename):
ddict = ConfigDict.ConfigDict()
config = self.getConfiguration()
for key in config.keys():
ddict[key] = config[key]
ddict.write(filename)
def correctNormalizedSpectrum(self, energy0, spectrum):
"""
"""
element = self._configuration['XAS']['element']
material = self._configuration['XAS'].get('material', element)
edge = self._configuration['XAS']['edge']
alphaIn, alphaOut = self._configuration['XAS']['angles']
edgeEnergy = Elements.Element[element]['binding'][edge]
userEdgeEnergy = self._configuration['XAS'].get('energy', edgeEnergy)
energy = numpy.array(energy0, dtype=numpy.float64)
#PyMca data ar in keV but XAS data are usually in eV
if 0.5 * (energy[0] + energy[-1])/edgeEnergy > 100:
# if the user did not do stupid things most likely
# the energy was given in eV
energy *= 0.001
if userEdgeEnergy/edgeEnergy > 100:
userEdgeEnergy *= 0.001
# forget about multilayers for the time being
# Elements.getMaterialMassFractions(materialList, massFractionsList)
massFractions = Elements.getMaterialMassFractions([material], [1.0])
# calculate the total mass attenuation coefficients at the given energies
# exciting the given element shell and not exciting it
EPDL = Elements.PyMcaEPDL97
totalCrossSection = 0.0
totalCrossSectionBackground = 0.0
for ele in massFractions.keys():
# make sure EPDL97 respects the Elements energies
if EPDL.EPDL97_DICT[ele]['original']:
EPDL.setElementBindingEnergies(ele,
Elements.Element[ele]['binding'])
if ele == element:
# make sure we respect the user energy
if abs(userEdgeEnergy-edgeEnergy) > 0.01:
newBinding = Elements.Element[ele]['binding']
newBinding[edge] = userEdgeEnergy
try:
EPDL.setElementBindingEnergies(ele, newBinding)
crossSections = EPDL.getElementCrossSections(ele, energy)
EPDL.setElementBindingEnergies(ele,
Elements.Element[ele]['binding'])
except:
EPDL.setElementBindingEnergies(ele,
Elements.Element[ele]['binding'])
raise
else:
crossSections = EPDL.getElementCrossSections(ele, energy)
else:
crossSections = EPDL.getElementCrossSections(ele, energy)
total = numpy.array(crossSections['total'])
tmpFloat = massFractions[ele] * total
totalCrossSection += tmpFloat
if ele != element:
totalCrossSectionBackground += tmpFloat
else:
edgeCrossSections = numpy.array(crossSections[edge])
muSampleJump = massFractions[ele] * edgeCrossSections
totalCrossSectionBackground += massFractions[ele] *\
(total - edgeCrossSections)
# calculate the mass attenuation coefficient of the sample at the fluorescent energy
# assume we are detecting the main fluorescence line of the element shell
if edge == 'K':
rays = Elements.Element[element]["Ka xrays"]
elif edge[0] == 'L':
rays = Elements.Element[element][edge + " xrays"]
elif edge[0] == 'M':
rays = []
for transition in Elements.Element[element]['M xrays']:
if transition.startswith(edge):
rays.append(transition)
lineList = []
for label in rays:
ene = Elements.Element[element][label]['energy']
rate = Elements.Element[element][label]['rate']
lineList.append([ene, rate, label])
# whithin 50 eV lines considered the same
lineList = Elements._filterPeaks(lineList, ethreshold=0.050)
# now take the returned line with the highest intensity
fluoLine = lineList[0]
for line in lineList:
if line[1] > fluoLine[1]:
fluoLine = line
# and calculate the sample total mass attenuation
muTotalFluorescence = 0.0
for ele in massFractions.keys():
crossSections = EPDL.getElementCrossSections(ele, fluoLine[0])
muTotalFluorescence += massFractions[ele] * crossSections['total'][0]
#define some convenience variables
sinIn = numpy.sin(numpy.deg2rad(alphaIn))
sinOut= numpy.sin(numpy.deg2rad(alphaOut))
g = sinIn / sinOut
if 1:
# thick sample
idx = numpy.where(muSampleJump > 0.0)[0][0]
muSampleJump[0:idx] = muSampleJump[idx]
ALPHA = g * (muTotalFluorescence/muSampleJump) + totalCrossSectionBackground/muSampleJump
return (spectrum * ALPHA)/(1 + ALPHA - spectrum)
elif 1:
# all samples (to be tested)
d = thickness * density
idx = numpy.where(muSampleJump > 0.0)[0][0]
muSampleJump[0:idx] = muSampleJump[idx]
ALPHA = g * (muTotalFluorescence/muSampleJump) + totalCrossSectionBackground/muSampleJump
thickTarget0 = (spectrum * ALPHA)/(1 + ALPHA - spectrum)
# Iterate to find the solution
x = spectrum
t = (ALPHA + 1) * d * muSampleJump/sinIn
if t.max() < 0.001:
A = 1 - t
else:
A = numpy.exp(-t)
t = (ALPHA * d * muSampleJump/sinIn)
if t.max() < 0.001:
B = 1.0 - t
else:
B = numpy.exp(-t)
delta = 10.0
i = 0
while (delta > 1.0e-5) and (i < 30):
old = x
x = thickTarget0 * (1.0 - A) / \
(1.0 - B * numpy.exp(- x * d * muSampleJump/sinIn))
delta = numpy.abs(x - old).max()
i += 1
return x
else:
thickness = 1.0
density = 1.0e-6
# FORMULA Booth and Bridges
ALPHA = g * muTotalFluorescence + totalCrossSection
tmpFloat0 = density * thickness * ALPHA / sinIn
tmpFloat1 = numpy.exp(-tmpFloat0)
BETA = (muSampleJump * tmpFloat0) * tmpFloat1
GAMMA = 1.0 - tmpFloat1
b = GAMMA * ( ALPHA - muSampleJump * spectrum + BETA)
discriminant = b*b + 4 * ALPHA * BETA * GAMMA * (spectrum - 1.0)
return 1 + (-b + numpy.sqrt(discriminant))/(2 * BETA)
if __name__ == "__main__":
from PyMca.PyMcaIO import specfilewrapper
instance = XASSelfattenuationCorrection()
configuration = {}
configuration['XAS'] = {}
configuration['XAS']['material'] = 'Pd'
configuration['XAS']['element'] = 'Pd'
configuration['XAS']['edge'] = 'L3'
configuration['XAS']['energy'] = Elements.Element['Pd']['binding']['L3']
configuration['XAS']['angles'] = [45., 45.]
instance.setConfiguration(configuration)
normalizedFile = specfilewrapper.Specfile('norm501.dat')
normalizedScan = normalizedFile[0]
energy, spectrum = normalizedScan[0], normalizedScan[1]
normalizedScan = None
normalizedFile = None
correctedSpectrum = instance.correctNormalizedSpectrum(energy, spectrum)
from matplotlib import pyplot as pl
pl.plot(energy, spectrum, 'b')
pl.plot(energy, correctedSpectrum, 'r')
pl.show()
normalizedFile = specfilewrapper.Specfile('PdL3Fabrice.DAT')
normalizedScan = normalizedFile[0]
data = normalizedScan.data()
energy = data[1, :]
spectrum = data[2, :]
corr = data[3, :]
normalizedScan = None
normalizedFile = None
correctedSpectrum = instance.correctNormalizedSpectrum(energy, spectrum)
pl.plot(energy, spectrum, 'b')
pl.plot(energy, corr, 'y')
pl.plot(energy, correctedSpectrum, 'r')
pl.show()
|