1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2015 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
cimport cython
import numpy
cimport numpy
from polspl cimport polspl as _polspl
from bessel0 cimport j0Single, j0Multiple
def j0(x):
if hasattr(x, "__len__"):
return _besselMultiple(x)
else:
return _besselSingle(x)
def _besselMultiple(x):
result = numpy.array(x, copy=True, dtype=numpy.float64)
cdef double[:] c_x = result
cdef int c_npts = c_x.size
j0Multiple(&c_x[0], c_npts)
return result
def _besselSingle(double x):
return j0Single(x)
def polspl(x, y, w, npts, xl, xh, nr, nc):
c = numpy.zeros((36,), dtype=numpy.float64)
cdef double[:] c_c = c
cdef double[:] c_x = numpy.ascontiguousarray(x,
dtype=numpy.float64)
cdef double[:] c_y = numpy.ascontiguousarray(y,
dtype=numpy.float64)
cdef double[:] c_w = numpy.ascontiguousarray(w,
dtype=numpy.float64)
cdef int c_npts = npts
cdef double[:] c_xl = numpy.ascontiguousarray(xl,
dtype=numpy.float64)
cdef double[:] c_xh = numpy.ascontiguousarray(xh,
dtype=numpy.float64)
cdef int c_nr = nr
cdef int[:] c_nc = numpy.ascontiguousarray(nc,
dtype=numpy.int32)
cdef int c_sizeC = c_c.size
_polspl(&c_x[0], &c_y[0], &c_w[0], c_npts, \
&c_xl[0], &c_xh[0], &c_nc[0], c_nr, &c_c[0], c_sizeC)
return c
def polspl2(x,y,w,npts,xl0,xh0,nr,nc):
# ;
# ; few definitions
# ;
cdef numpy.ndarray[double, ndim=1, mode='c'] buffer_xl0 = \
numpy.ascontiguousarray(xl0, numpy.float64)
cdef double * xl = <double *> buffer_xl0.data
cdef numpy.ndarray[double, ndim=1, mode='c'] buffer_xh0 = \
numpy.ascontiguousarray(xh0, numpy.float64)
cdef double * xh = <double *> buffer_xh0.data
df = numpy.zeros(26)
a = numpy.zeros((36,37))
nbs = numpy.zeros(11,dtype=int)
cdef double[:] xk0 = numpy.zeros(10)
cdef double * xk = &xk0[0]
c = numpy.zeros(36)
cdef int j=0
cdef int i=0
ne_idl=0
n = 0
cdef int k = 0
cdef int ibl = 0
cdef int ns = 0
cdef int ns1 = 0
nbs[1]=1
for i in range(1,nr+1):
n=n+int(nc[i])
nbs[i+1]=n+1
if xl[i] < xh[i]:
pass
else:
t=xl[i]
xl[i]=xh[i]
xh[i]=t
n=n+2*(nr-1)
n1=n+1
xl[nr+1]=0.
xh[nr+1]=0.
# this loop ...
for ibl in range(1,nr+1):
xk[ibl]=.5*(xh[ibl]+xl[ibl+1])
if (xl[ibl] > xl[ibl+1]):
xk[ibl]=.5*(xl[ibl]+xh[ibl+1])
ns=nbs[ibl]
ne_idl=nbs[ibl+1]-1
for i in range(1, npts+1):
if((x[i] < xl[ibl]) or (x[i] > xh[ibl])):
pass
else:
df[ns]=1.0
ns1=ns+1
for j in range(ns1,ne_idl+1):
df[j]=df[j-1]*x[i]
for j in range(ns,ne_idl+1):
for k in range(j,ne_idl+1):
a[j,k]=a[j,k]+df[j]*df[k]*w[i]
a[j,n1]=a[j,n1]+df[j]*y[i]*w[i]
# ... has to be faster
ncol=nbs[nr+1]-1
nk=nr-1
if (nk == 0):
pass
else:
for ik in range(1,nk+1):
ncol=ncol+1
ns=nbs[ik]
ne_idl=nbs[ik+1]-1
a[ns,ncol]=-1.
ns=ns+1
for i in range(ns,ne_idl+1):
a[i,ncol]=a[i-1,ncol]*xk[ik]
ncol=ncol+1
a[ns,ncol]=-1.
ns=ns+1
if (ns > ne_idl):
pass
else:
for i in range(ns,ne_idl+1):
a[i,ncol]=(ns-i-2)*numpy.power(xk[ik],(i-ns+1))
ncol=ncol-1
ns=nbs[ik+1]
ne_idl=nbs[ik+2]-1
a[ns,ncol]=1.0
ns=ns+1
for i in range(ns,ne_idl+1):
a[i,ncol]=a[i-1,ncol]*xk[ik]
ncol=ncol+1
a[ns,ncol]=1.0
ns=ns+1
if (ns > ne_idl):
pass
else:
for i in range(ns,ne_idl+1):
a[i,ncol]=(i-ns+2)*numpy.power(xk[ik],(i-ns+1))
for i in range(1,n+1):
i1=i-1
for j in range(1,i1+1):
a[i,j]=a[j,i]
nm1=n-1
for i in range(1,nm1+1):
i1=i+1
m=i
t=numpy.abs(a[i,i])
for j in range(i1,n+1):
if (t >= numpy.abs(a[j,i])):
pass
else:
m=j
t=numpy.abs(a[j,i])
if (m == i):
pass
else:
for j in range(1,n1+1):
t=a[i,j]
a[i,j]=a[m,j]
a[m,j]=t
for j in range(i1,n+1):
t=a[j,i]/a[i,i]
for k in range(i1,n1+1):
a[j,k]=a[j,k]-t*a[i,k]
c[n]=a[n,n1]/a[n,n]
for i in range(1,nm1+1):
ni=n-i
t=a[ni,n1]
ni1=ni+1
for j in range(ni1,n+1):
t=t-c[j]*a[ni,j]
c[ni]=t/a[ni,ni]
return c
|