File: FastXRFLinearFit.py

package info (click to toggle)
pymca 5.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,392 kB
  • sloc: python: 155,456; ansic: 15,843; makefile: 116; sh: 73; xml: 55
file content (1188 lines) | stat: -rw-r--r-- 52,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2022 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """
Module to perform a fast linear fit on a stack of fluorescence spectra.
"""
import os
import numpy
import logging
import time
import h5py
import collections
from . import ClassMcaTheory
from . import ConcentrationsTool
from PyMca5.PyMcaMath.linalg import lstsq
from PyMca5.PyMcaMath.fitting import Gefit
from PyMca5.PyMcaMath.fitting import SpecfitFuns
from PyMca5.PyMcaIO import ConfigDict
from .XRFBatchFitOutput import OutputBuffer
from PyMca5.PyMcaCore import McaStackView

_logger = logging.getLogger(__name__)


class FastXRFLinearFit(object):
    def __init__(self, mcafit=None):
        self._config = None
        if mcafit is None:
            self._mcaTheory = ClassMcaTheory.McaTheory()
        else:
            self._mcaTheory = mcafit

    def setFitConfiguration(self, configuration):
        self._mcaTheory.setConfiguration(configuration)
        self._config = self._mcaTheory.getConfiguration()

    def setFitConfigurationFile(self, ffile):
        if not os.path.exists(ffile.split('::')[0]):
            raise IOError("File <%s> does not exists" % ffile)
        configuration = ConfigDict.ConfigDict()
        configuration.read(ffile)
        self.setFitConfiguration(configuration)

    def fitMultipleSpectra(self, x=None, y=None, xmin=None, xmax=None,
                           configuration=None, concentrations=False,
                           ysum=None, weight=None, refit=True, livetime=None,
                           outbuffer=None, save=True, **outbufferinitargs):
        """
        This method performs the actual fit. The y keyword is the only mandatory input argument.

        :param x: 1D array containing the x axis (usually the channels) of the spectra.
        :param y: nD array containing the spectra
        :param xmin: lower limit of the fitting region
        :param xmax: upper limit of the fitting region
        :param ysum: sum spectrum
        :param weight: 0 Means no weight, 1 Use an average weight, 2 Individual weights (slow)
        :param concentrations: 0 Means no calculation, 1 Calculate elemental concentrations
        :param refit: if False, no check for negative results. Default is True.
        :param livetime: It will be used if not different from None and concentrations
                         are to be calculated by using fundamental parameters with
                         automatic time. The default is None.
        :param outbuffer:
        :param save: set to False to postpone saving the in-memory buffers
        :return OutputBuffer: works like a dict
        """
        # Parse data
        x, data, mcaIndex, livetime = self._fitParseData(x=x, y=y,
                                                         livetime=livetime)

        # Calculation needs buffer for memory allocation (memory or H5)
        if outbuffer is None:
            outbuffer = OutputBuffer(**outbufferinitargs)
        with outbuffer.Context(save=save):
            t0 = time.time()

            # Configure fit
            nSpectra = data.size // data.shape[mcaIndex]
            configorg, config, weight, weightPolicy, \
            autotime, liveTimeFactor = self._fitConfigure(
                                                configuration=configuration,
                                                concentrations=concentrations,
                                                livetime=livetime,
                                                weight=weight,
                                                nSpectra=nSpectra)
            outbuffer['configuration'] = configorg

            # Sum spectrum
            if ysum is None:
                if weightPolicy == 1:
                    # we need to calculate the sum spectrum
                    # to derive the uncertainties
                    sumover = 'all'
                elif not concentrations:
                    # one spectrum is enough
                    sumover = 'first pixel'
                else:
                    sumover = 'first vector'
                yref = self._fitReferenceSpectrum(data=data, mcaIndex=mcaIndex,
                                                  sumover=sumover)
            else:
                yref = ysum

            # Get the basis of the linear models (i.e. derivative to peak areas)
            if xmin is None:
                xmin = config['fit']['xmin']
            if xmax is None:
                xmax = config['fit']['xmax']
            dtypeCalculcation = self._fitDtypeCalculation(data)
            self._mcaTheory.setData(x=x, y=yref, xmin=xmin, xmax=xmax)
            derivatives, freeNames, nFree, nFreeBkg = self._fitCreateModel(dtype=dtypeCalculcation)

            # Background anchor points (if any)
            anchorslist = self._fitBkgAnchorList(config=config)

            # MCA trimming: [iXMin:iXMax]
            iXMin, iXMax = self._fitMcaTrimInfo(x=x)
            sliceChan = slice(iXMin, iXMax)
            nObs = iXMax-iXMin

            # Least-squares parameters
            if weightPolicy == 2:
                # Individual spectrum weights (assumed Poisson)
                SVD = False
                sigma_b = None
            elif weightPolicy == 1:
                # Average weight from sum spectrum (assume Poisson)
                # the +1 is to prevent misbehavior due to weights less than 1.0
                sigma_b = 1 + numpy.sqrt(yref[sliceChan])/nSpectra
                sigma_b = sigma_b.reshape(-1, 1)
                SVD = True
            else:
                # No weights
                SVD = True
                sigma_b = None
            lstsq_kwargs = {'svd': SVD, 'sigma_b': sigma_b, 'weight': weight}

            # Allocate output buffers
            stackShape = data.shape
            imageShape = list(stackShape)
            imageShape.pop(mcaIndex)
            imageShape = tuple(imageShape)
            paramShape = (nFree,) + imageShape
            dtypeResult = self._fitDtypeResult(data)
            dataAttrs = {}  #{'units':'counts'})
            paramAttrs = {'errors': 'uncertainties',
                          'default': not concentrations}
            results = outbuffer.allocateMemory('parameters',
                                                shape=paramShape,
                                                dtype=dtypeResult,
                                                labels=freeNames,
                                                dataAttrs=dataAttrs,
                                                groupAttrs=paramAttrs,
                                                memtype='ram')
            uncertainties = outbuffer.allocateMemory('uncertainties',
                                                shape=paramShape,
                                                dtype=dtypeResult,
                                                labels=freeNames,
                                                dataAttrs=dataAttrs,
                                                groupAttrs=None,
                                                memtype='ram')
            fitAttrs = {}
            if outbuffer.saveDataDiagnostics:
                # Generic axes
                dataAxesNames = ['dim{}'.format(i) for i in range(data.ndim)]
                dataAxes = [(name, numpy.arange(n, dtype=dtypeResult), {})
                            for name, n in zip(dataAxesNames, stackShape)]
                # MCA axis: use energy and add channels as extra (unused) axis
                xdata = self._mcaTheory.xdata0.flatten()
                zero, gain = self._mcaTheory.parameters[:2]
                xenergy = zero + gain*xdata
                dataAxesNames[mcaIndex] = 'energy'
                dataAxes[mcaIndex] = 'energy', xenergy.astype(dtypeResult), {'units': 'keV'}
                dataAxes.append(('channels', xdata.astype(numpy.float32), {}))
                fitAttrs['axes'] = dataAxes
                fitAttrs['axesused'] = dataAxesNames

            if outbuffer.saveDataDiagnostics:
                derivAttrs = {}
                derivAttrs['axes'] = [('energy', xenergy.astype(dtypeResult), {'units': 'keV'}),
                                      ('channels', xdata.astype(numpy.float32), {})]
                derivAttrs['axesused'] = ["energy"]
                _derivatives = outbuffer.allocateMemory('derivatives',
                                        shape=(nFree, xdata.size),
                                        dtype=derivatives.dtype,
                                        fill_value=numpy.nan,
                                        labels=freeNames,
                                        dataAttrs=dataAttrs,
                                        groupAttrs=derivAttrs,
                                        memtype='ram')
                _derivatives[:, iXMin:iXMax] = derivatives.T

            dataAttrs = {}
            if outbuffer.saveFOM:
                nFreeParameters = outbuffer.allocateMemory('nFreeParameters',
                                                           group='diagnostics',
                                                           shape=imageShape,
                                                           fill_value=nFree,
                                                           dtype=numpy.int32,
                                                           dataAttrs=dataAttrs,
                                                           groupAttrs=None,
                                                           memtype='ram')
                nObservations = outbuffer.allocateMemory('nObservations',
                                                         group='diagnostics',
                                                         shape=imageShape,
                                                         fill_value=nObs,
                                                         dtype=numpy.int32,
                                                         dataAttrs=dataAttrs,
                                                         groupAttrs=None,
                                                         memtype='ram')
            else:
                nFreeParameters = None
            if outbuffer.saveFit:
                fitmodel = outbuffer.allocateMemory('model',
                                                    group='fit',
                                                    shape=stackShape,
                                                    dtype=dtypeResult,
                                                    chunks=True,
                                                    fill_value=0,
                                                    dataAttrs=dataAttrs,
                                                    groupAttrs=fitAttrs,
                                                    memtype='hdf5')
                idx = [slice(None)]*fitmodel.ndim
                idx[mcaIndex] = slice(0, iXMin)
                fitmodel[tuple(idx)] = numpy.nan
                idx[mcaIndex] = slice(iXMax, None)
                fitmodel[tuple(idx)] = numpy.nan
            else:
                fitmodel = None

            _logger.debug("Configuration elapsed = %f", time.time() - t0)
            t0 = time.time()

            # Fit all spectra
            self._fitLstSqAll(data=data, sliceChan=sliceChan, mcaIndex=mcaIndex,
                            derivatives=derivatives, fitmodel=fitmodel,
                            results=results, uncertainties=uncertainties,
                            config=config, anchorslist=anchorslist,
                            lstsq_kwargs=lstsq_kwargs)

            t = time.time() - t0
            _logger.debug("First fit elapsed = %f", t)
            if t > 0.:
                _logger.debug("Spectra per second = %f",
                              numpy.prod(imageShape)/float(t))
            t0 = time.time()

            # Refit spectra with negative peak areas
            if refit:
                self._fitLstSqNegative(data=data, sliceChan=sliceChan, mcaIndex=mcaIndex,
                            derivatives=derivatives, fitmodel=fitmodel,
                            results=results, uncertainties=uncertainties,
                            config=config, anchorslist=anchorslist,
                            lstsq_kwargs=lstsq_kwargs, freeNames=freeNames,
                            nFreeBkg=nFreeBkg, nFreeParameters=nFreeParameters)
                t = time.time() - t0
                _logger.debug("Fit of negative peaks elapsed = %f", t)
                t0 = time.time()

            # Return results as a dictionary
            if outbuffer.saveData:
                outbuffer.allocateMemory('data',
                                     group='fit',
                                     data=data,
                                     dtype=dtypeResult,
                                     chunks=True,
                                     dataAttrs=dataAttrs,
                                     groupAttrs=fitAttrs,
                                     memtype='hdf5')
            if outbuffer.saveResiduals:
                residuals = outbuffer.allocateMemory('residuals',
                                                 group='fit',
                                                 data=data,
                                                 dtype=dtypeResult,
                                                 chunks=True,
                                                 dataAttrs=dataAttrs,
                                                 groupAttrs=fitAttrs,
                                                 memtype='hdf5')
                residuals[()] -= fitmodel

            if concentrations:
                t0 = time.time()
                labels, concentrations = self._fitDeriveMassFractions(config=config,
                                             nFreeBkg=nFreeBkg,
                                             results=results,
                                             autotime=autotime,
                                             liveTimeFactor=liveTimeFactor)
                dataAttrs = {}  #{'units':'dimensionless'})
                massfracAttrs = {'default': True}
                outbuffer.allocateMemory('massfractions',
                                         data=concentrations,
                                         labels=labels,
                                         dataAttrs=dataAttrs,
                                         groupAttrs=massfracAttrs,
                                         memtype='ram')
                t = time.time() - t0
                _logger.debug("Calculation of concentrations elapsed = %f", t)
            return outbuffer

    @staticmethod
    def _fitParseData(x=None, y=None, livetime=None):
        """Parse the input data (MCA and livetime)
        """
        # Extract counts
        if y is None:
            raise RuntimeError("y keyword argument is mandatory!")
        if hasattr(y, "info") and hasattr(y, "data"):
            data = y.data
            mcaIndex = y.info.get("McaIndex", -1)
        else:
            data = y
            mcaIndex = -1

        # Extract channels
        if x is None:
            if hasattr(y, "info") and hasattr(y, "x"):
                x = y.x[0]
        if livetime is None:
            if hasattr(y, "info"):
                if "McaLiveTime" in y.info:
                    livetime = y.info["McaLiveTime"]

        # At least 2D
        ndim = data.ndim
        if ndim == 0:
            shape = (1, 1)
        elif ndim == 1:
            shape = (1, data.size)
        else:
            shape = None
        if shape is not None:
            data = data.reshape(shape)
            if livetime is not None:
                livetime = livetime.reshape(shape)

        return x, data, mcaIndex, livetime

    def _fitConfigure(self, configuration=None, concentrations=False,
                      livetime=None, weight=None, nSpectra=None):
        """Prepare configuration for fitting
        """
        if configuration is not None:
            self._mcaTheory.setConfiguration(configuration)
        elif self._config is None:
            raise ValueError("Fit configuration missing")
        else:
            _logger.debug("Setting default configuration")
            self._mcaTheory.setConfiguration(self._config)
        # read the current configuration
        # it is a copy, we can modify it at will
        configorg = self._mcaTheory.getConfiguration()
        config = self._mcaTheory.getConfiguration()
        toReconfigure = False

        # if concentrations and use times, it needs to be reconfigured
        # without using times and correct later on. If the concentrations
        # are to be calculated from internal standard there is no need to
        # raise an exception either.
        autotime = 0
        liveTimeFactor = 1.0
        if not concentrations:
            # ignore any time information to prevent unnecessary errors when
            # setting the fitting data whithout the time information
            if config['concentrations'].get("useautotime", 0):
                config['concentrations']["useautotime"] = 0
                toReconfigure = True
        elif config["concentrations"]["usematrix"]:
            if config['concentrations'].get("useautotime", 0):
                config['concentrations']["useautotime"] = 0
                toReconfigure = True
        else:
            # we are calculating concentrations from fundamental parameters
            autotime = config['concentrations'].get("useautotime", 0)
            if autotime:
                if livetime is None:
                    txt = "Automatic time requested but no time information provided"
                    raise RuntimeError(txt)
                elif numpy.isscalar(livetime):
                    liveTimeFactor = \
                        float(config['concentrations']["time"]) / livetime
                elif livetime.size == nSpectra:
                    liveTimeFactor = \
                        float(config['concentrations']["time"]) / livetime
                else:
                    raise RuntimeError(
                        "Number of live times not equal number of spectra")
                config['concentrations']["useautotime"] = 0
                toReconfigure = True

        # use of strategies is not supported for the time being
        strategy = config['fit'].get('strategyflag', 0)
        if strategy:
            raise RuntimeError("Strategies are incompatible with fast fit")

        # background
        if config['fit']['stripflag']:
            if config['fit']['stripalgorithm'] == 1:
                _logger.debug("SNIP")
            else:
                raise RuntimeError("Please use the faster SNIP background")

        if weight is None:
            # dictated by the file
            weight = config['fit']['fitweight']
            if weight:
                # individual pixel weights (slow)
                weightPolicy = 2
            else:
                # No weight
                weightPolicy = 0
        elif weight == 1:
            # use average weight from the sum spectrum
            weightPolicy = 1
            if not config['fit']['fitweight']:
                config['fit']['fitweight'] = 1
                toReconfigure = True
        elif weight == 2:
            # individual pixel weights (slow)
            weightPolicy = 2
            if not config['fit']['fitweight']:
                config['fit']['fitweight'] = 1
                toReconfigure = True
            weight = 1
        else:
            # No weight
            weightPolicy = 0
            if config['fit']['fitweight']:
                config['fit']['fitweight'] = 0
                toReconfigure = True
            weight = 0

        if not config['fit']['linearfitflag']:
            # make sure we force a linear fit
            config['fit']['linearfitflag'] = 1
            toReconfigure = True

        if toReconfigure:
            # we must configure again the fit
            self._mcaTheory.setConfiguration(config)

        # make sure we calculate the matrix of the contributions
        self._mcaTheory.enableOptimizedLinearFit()

        return configorg, config, weight, weightPolicy, \
               autotime, liveTimeFactor

    def _fitReferenceSpectrum(self, data=None, mcaIndex=None, sumover='all'):
        """Get sum spectrum
        """
        dtype = self._fitDtypeCalculation(data)
        if sumover == 'all':
            nMca = 20, 'MB'
            _logger.debug('Add spectra in chunks of {}'.format(nMca))
            datastack = McaStackView.FullView(data, mcaAxis=mcaIndex, nMca=nMca)
            yref = numpy.zeros((data.shape[mcaIndex],), dtype)
            for key, chunk in datastack.items():
                yref += chunk.sum(axis=0, dtype=dtype)
        elif sumover == 'first vector':
            # Sum spectrum of the first row
            ndim = data.ndim
            idx = [0]*ndim
            while mcaIndex < 0:
                mcaIndex += ndim
            idx[mcaIndex] = slice(None)
            for axis in range(data.ndim-1, -1, -1):
                if idx[axis] != slice(None):
                    idx[axis] = slice(None)
                    break
            axis = int(axis > mcaIndex)
            yref = data[tuple(idx)].sum(axis=axis, dtype=dtype)
        else:
            # First spectrum
            idx = [0]*data.ndim
            idx[mcaIndex] = slice(None)
            yref = data[tuple(idx)].astype(dtype)
        return yref

    def _fitCreateModel(self, dtype=None):
        """Get linear model for fitting
        """
        # Initialize the derivatives
        self._mcaTheory.estimate()

        # now we can get the derivatives respect to the free parameters
        # These are the "derivatives" respect to the peaks
        # linearMatrix = self._mcaTheory.linearMatrix

        # but we are still missing the derivatives from the background
        nFree = 0
        freeNames = []
        nFreeBkg = 0
        for iParam, param in enumerate(self._mcaTheory.PARAMETERS):
            if self._mcaTheory.codes[0][iParam] != ClassMcaTheory.Gefit.CFIXED:
                nFree += 1
                freeNames.append(param)
                if iParam < self._mcaTheory.NGLOBAL:
                    nFreeBkg += 1
        if nFree == 0:
            txt = "No free parameters to be fitted!\n"
            txt += "No peaks inside fitting region?"
            raise ValueError(txt)

        # build the matrix of derivatives
        derivatives = None
        idx = 0
        for iParam, param in enumerate(self._mcaTheory.PARAMETERS):
            if self._mcaTheory.codes[0][iParam] == ClassMcaTheory.Gefit.CFIXED:
                continue
            deriv = self._mcaTheory.linearMcaTheoryDerivative(self._mcaTheory.parameters,
                                                              iParam,
                                                              self._mcaTheory.xdata)
            deriv.shape = -1
            if derivatives is None:
                derivatives = numpy.zeros((deriv.shape[0], nFree), dtype=dtype)
            derivatives[:, idx] = deriv
            idx += 1

        return derivatives, freeNames, nFree, nFreeBkg

    def _fitBkgAnchorList(self, config=None):
        """Get anchors for background subtraction
        """
        xdata = self._mcaTheory.xdata  # trimmed
        if config['fit']['stripflag']:
            anchorslist = []
            if config['fit']['stripanchorsflag']:
                if config['fit']['stripanchorslist'] is not None:
                    ravelled = numpy.ravel(xdata)
                    for channel in config['fit']['stripanchorslist']:
                        if channel <= ravelled[0]:
                            continue
                        index = numpy.nonzero(ravelled >= channel)[0]
                        if len(index):
                            index = min(index)
                            if index > 0:
                                anchorslist.append(index)
            if len(anchorslist) == 0:
                anchorslist = [0, self._mcaTheory.ydata.size - 1]
            anchorslist.sort()
        else:
            anchorslist = None
        return anchorslist

    def _fitMcaTrimInfo(self, x=None):
        """Start and end channels for MCA trimming
        """
        xdata = self._mcaTheory.xdata

        # find the indices to be used for selecting the appropriate data
        # if the original x data were not ordered we have a problem
        # TODO: check for original ordering.
        if x is None:
            # we have an enumerated channels axis
            iXMin = xdata[0]
            iXMax = xdata[-1]
        else:
            iXMin = numpy.nonzero(x <= xdata[0])[0][-1]
            iXMax = numpy.nonzero(x >= xdata[-1])[0][0]
        # numpy 1.11.0 returns an array on previous expression
        # and then complains about a future deprecation warning
        # because of using an array and not an scalar in the selection
        if hasattr(iXMin, "shape"):
            if len(iXMin.shape):
                iXMin = iXMin[0]
        if hasattr(iXMax, "shape"):
            if len(iXMax.shape):
                iXMax = iXMax[0]
        return iXMin, iXMax+1

    def _dataChunkIter(self, slicecls, data=None, fitmodel=None, **kwargs):
        dtype = self._fitDtypeResult(data)
        datastack = slicecls(data, dtype=dtype,
                             readonly=True, **kwargs)
        chunkItems = datastack.items(keyType='select')
        if fitmodel is not None:
            modelstack = slicecls(fitmodel, dtype=dtype,
                                  readonly=False, **kwargs)
            modeliter = modelstack.items()
            chunkItems = McaStackView.izipChunkItems(chunkItems, modeliter)
        return chunkItems

    def _fitLstSqAll(self, data=None, sliceChan=None, mcaIndex=None,
                     derivatives=None, results=None, uncertainties=None,
                     fitmodel=None, config=None, anchorslist=None,
                     lstsq_kwargs=None):
        """
        Fit all spectra
        """
        nChan, nFree = derivatives.shape
        bkgsub = bool(config['fit']['stripflag'])

        nMca = 1, 'MB'
        _logger.debug('Fit spectra in chunks of {}'.format(nMca))
        chunkItems = self._dataChunkIter(McaStackView.FullView,
                                         data=data,
                                         fitmodel=fitmodel,
                                         mcaSlice=sliceChan,
                                         mcaAxis=mcaIndex,
                                         nMca=nMca)
        for chunk in chunkItems:
            if fitmodel is None:
                (idx, idxShape), chunk = chunk
                chunkModel = None
            else:
                ((idx, idxShape), chunk), (_, chunkModel) = chunk
                chunkModel = chunkModel.T
            chunk = chunk.T

            # Subtract background
            if bkgsub:
                self._fitBkgSubtract(chunk, config=config,
                                     anchorslist=anchorslist,
                                     fitmodel=chunkModel)

            # Solve linear system of equations
            ddict = lstsq(derivatives, chunk, digested_output=True,
                          **lstsq_kwargs)
            lstsq_kwargs['last_svd'] = ddict.get('svd', None)

            # Save results
            idx = (slice(None),) + idx
            idxShape = (nFree,) + idxShape
            results[idx] = ddict['parameters'].reshape(idxShape)
            uncertainties[idx] = ddict['uncertainties'].reshape(idxShape)
            if chunkModel is not None:
                if bkgsub:
                    chunkModel += numpy.dot(derivatives, ddict['parameters'])
                else:
                    chunkModel[()] = numpy.dot(derivatives, ddict['parameters'])

    def _fitLstSqReduced(self, data=None, sliceChan=None, mcaIndex=None,
                         derivatives=None, results=None, uncertainties=None,
                         fitmodel=None, config=None, anchorslist=None,
                         lstsq_kwargs=None, mask=None,
                         skipNames=None, skipParams=None,
                         nFreeParameters=None, nmin=None):
        """
        Fit reduced number of spectra (mask) with a reduced model (skipped parameters will be set to zero)
        """
        npixels = int(mask.sum())
        nMca = 1, 'MB'
        if npixels < nmin:
            _logger.debug("Not worth refitting #%d pixels", npixels)
            for iFree, name in zip(skipParams, skipNames):
                results[iFree][mask] = 0.0
                uncertainties[iFree][mask] = 0.0
                _logger.debug("%d pixels of parameter %s set to zero",
                              npixels, name)
            if nFreeParameters is not None:
                nFreeParameters[mask] = 0
        else:
            _logger.debug("Refitting #{} spectra in chunks of {}".format(npixels, nMca))
            nChan, nFreeOrg = derivatives.shape
            idxFree = [i for i in range(nFreeOrg) if i not in skipParams]
            nFree = len(idxFree)
            A = derivatives[:, idxFree]
            lstsq_kwargs['last_svd'] = None

            # Fit all selected spectra in one chunk
            bkgsub = bool(config['fit']['stripflag'])
            chunkItems = self._dataChunkIter(McaStackView.MaskedView,
                                             data=data,
                                             fitmodel=fitmodel,
                                             mask=mask,
                                             mcaSlice=sliceChan,
                                             mcaAxis=mcaIndex,
                                             nMca=nMca)
            for chunk in chunkItems:
                if fitmodel is None:
                    (idx, idxShape), chunk = chunk
                    chunkModel = None
                else:
                    ((idx, idxShape), chunk), (_, chunkModel) = chunk
                    chunkModel = chunkModel.T
                chunk = chunk.T

                # Subtract background
                if bkgsub:
                    self._fitBkgSubtract(chunk, config=config,
                                         anchorslist=anchorslist,
                                         fitmodel=chunkModel)

                # Solve linear system of equations
                ddict = lstsq(A, chunk, digested_output=True,
                              **lstsq_kwargs)
                lstsq_kwargs['last_svd'] = ddict.get('svd', None)

                # Save results
                iParam = 0
                for iFree in range(nFreeOrg):
                    if iFree in skipParams:
                        results[iFree][idx] = 0.0
                        uncertainties[iFree][idx] = 0.0
                    else:
                        results[iFree][idx] = ddict['parameters'][iParam]\
                                                .reshape(idxShape)
                        uncertainties[iFree][idx] = ddict['uncertainties'][iParam]\
                                                .reshape(idxShape)
                        iParam += 1
                if chunkModel is not None:
                    if bkgsub:
                        chunkModel += numpy.dot(A, ddict['parameters'])
                    else:
                        chunkModel[()] = numpy.dot(A, ddict['parameters'])
                if nFreeParameters is not None:
                    nFreeParameters[idx] = nFree

    @staticmethod
    def _fitDtypeResult(data):
        if data.dtype not in [numpy.float32, numpy.float64]:
            if data.itemsize < 5:
                return numpy.float32
            else:
                return numpy.float64
        else:
            return data.dtype

    @staticmethod
    def _fitDtypeCalculation(data):
        # TODO: always 64bit?
        return numpy.float64

    @staticmethod
    def _fitBkgSubtract(spectra, config=None, anchorslist=None, fitmodel=None):
        """Subtract brackground from data and add it to fit model
        """
        for k in range(spectra.shape[1]):
            # obtain the smoothed spectrum
            background = SpecfitFuns.SavitskyGolay(spectra[:, k],
                                    config['fit']['stripfilterwidth'])
            lastAnchor = 0
            for anchor in anchorslist:
                if (anchor > lastAnchor) and (anchor < background.size):
                    background[lastAnchor:anchor] =\
                            SpecfitFuns.snip1d(background[lastAnchor:anchor],
                                               config['fit']['snipwidth'],
                                               0)
                    lastAnchor = anchor
            if lastAnchor < background.size:
                background[lastAnchor:] =\
                        SpecfitFuns.snip1d(background[lastAnchor:],
                                           config['fit']['snipwidth'],
                                           0)
            spectra[:, k] -= background
            if fitmodel is not None:
                fitmodel[:, k] = background

    def _fitLstSqNegative(self, data=None, freeNames=None, nFreeBkg=None,
                          results=None, **kwargs):
        """Refit pixels with negative peak areas (remove the parameters from the model)
        """
        nFree = len(freeNames)
        iIter = 1
        nIter = 2 * (nFree - nFreeBkg) + iIter
        negativePresent = True
        while negativePresent:
            # Pixels with negative peak areas
            negList = []
            for iFree in range(nFreeBkg, nFree):
                negMask = results[iFree] < 0
                nNeg = negMask.sum()
                if nNeg > 0:
                    negList.append((nNeg, iFree, negMask))

            # No refit needed when no negative peak areas
            if not negList:
                negativePresent = False
                continue

            # Set negative peak areas to zero when
            # the maximal iterations is reached
            if iIter > nIter:
                for nNeg, iFree, negMask in negList:
                    results[iFree][negMask] = 0.0
                    _logger.warning("%d pixels of parameter %s forced to zero",
                                    nNeg, freeNames[iFree])
                continue

            # Bad pixels: use peak area with the most negative values
            negList.sort()
            negList.reverse()
            badParameters = []
            badParameters.append(negList[0][1])
            badMask = negList[0][2]

            # Combine with masks of all other peak areas
            # (unless none of them has negative pixels)
            # This is done to prevent endless loops:
            # if two or more parameters have common negative pixels
            # and one of them remains negative when forcing other one to zero
            for iFree, (nNeg, iFree, negMask) in enumerate(negList):
                if iFree not in badParameters and nNeg:
                    combMask = badMask & negMask
                    if combMask.sum():
                        badParameters.append(iFree)
                        badMask = combMask

            # Fit with a reduced model (skipped parameters are fixed at zero)
            badNames = [freeNames[iFree] for iFree in badParameters]
            nmin = 0.0025 * badMask.size
            _logger.debug("Refit iteration #{}. Fixed to zero: {}"
                          .format(iIter, badNames))
            self._fitLstSqReduced(data=data, mask=badMask,
                                  skipParams=badParameters,
                                  skipNames=badNames,
                                  results=results,
                                  nmin=nmin, **kwargs)
            iIter += 1

    def _fitDeriveMassFractions(self, config=None, results=None, nFreeBkg=None,
                                autotime=None, liveTimeFactor=None):
        """Calculate concentrations from peak areas
        """
        # check if an internal reference is used and if it is set to auto
        cTool = ConcentrationsTool.ConcentrationsTool()
        cToolConf = cTool.configure()
        cToolConf.update(config['concentrations'])

        fitreference = False
        if config['concentrations']['usematrix']:
            _logger.debug("USING MATRIX")
            if config['concentrations']['reference'].upper() == "AUTO":
                fitreference = True
        elif autotime:
            # we have to calculate with the time in the configuration
            # and correct later on
            cToolConf["autotime"] = 0

        fitresult = {}
        if fitreference:
            # we have to fit the "reference" spectrum just to get the reference element
            mcafitresult = self._mcaTheory.startfit(digest=0, linear=True)
            # if one of the elements has zero area this cannot be made directly
            fitresult['result'] = self._mcaTheory.imagingDigestResult()
            fitresult['result']['config'] = config
            concentrationsResult, addInfo = cTool.processFitResult(config=cToolConf,
                                                fitresult=fitresult,
                                                elementsfrommatrix=False,
                                                fluorates=self._mcaTheory._fluoRates,
                                                addinfo=True)
            # and we have to make sure that all the areas are positive
            for group in fitresult['result']['groups']:
                if fitresult['result'][group]['fitarea'] <= 0.0:
                    # give a tiny area
                    fitresult['result'][group]['fitarea'] = 1.0e-6
            config['concentrations']['reference'] = addInfo['ReferenceElement']
        else:
            fitresult['result'] = {}
            fitresult['result']['config'] = config
            fitresult['result']['groups'] = []
            idx = 0
            for iParam, param in enumerate(self._mcaTheory.PARAMETERS):
                if self._mcaTheory.codes[0][iParam] == Gefit.CFIXED:
                    continue
                if iParam < self._mcaTheory.NGLOBAL:
                    # background
                    pass
                else:
                    fitresult['result']['groups'].append(param)
                    fitresult['result'][param] = {}
                    # we are just interested on the factor to be applied to the area to get the
                    # concentrations
                    fitresult['result'][param]['fitarea'] = 1.0
                    fitresult['result'][param]['sigmaarea'] = 1.0
                idx += 1
        concentrationsResult, addInfo = cTool.processFitResult(config=cToolConf,
                                                fitresult=fitresult,
                                                elementsfrommatrix=False,
                                                fluorates=self._mcaTheory._fluoRates,
                                                addinfo=True)
        nValues = 1
        if len(concentrationsResult['layerlist']) > 1:
            nValues += len(concentrationsResult['layerlist'])
        nElements = len(list(concentrationsResult['mass fraction'].keys()))
        massShape = list(results.shape)
        massShape[0] = nValues * nElements
        massFractions = numpy.zeros(massShape, dtype=results.dtype)

        referenceElement = addInfo['ReferenceElement']
        referenceTransitions = addInfo['ReferenceTransitions']
        _logger.debug("Reference <%s>  transition <%s>",
                      referenceElement, referenceTransitions)
        labels = []
        if referenceElement in ["", None, "None"]:
            _logger.debug("No reference")
            counter = 0
            for i, group in enumerate(fitresult['result']['groups']):
                if group.lower().startswith("scatter"):
                    _logger.debug("skept %s", group)
                    continue
                labels.append(group)
                if counter == 0:
                    if hasattr(liveTimeFactor, "shape"):
                        liveTimeFactor.shape = results[nFreeBkg+i].shape
                massFractions[counter] = liveTimeFactor * \
                    results[nFreeBkg+i] * \
                    (concentrationsResult['mass fraction'][group] / \
                        fitresult['result'][group]['fitarea'])
                counter += 1
                if len(concentrationsResult['layerlist']) > 1:
                    for layer in concentrationsResult['layerlist']:
                        labels.append((group, layer))
                        massFractions[counter] = liveTimeFactor * \
                                results[nFreeBkg+i] * \
                                (concentrationsResult[layer]['mass fraction'][group] / \
                                    fitresult['result'][group]['fitarea'])
                        counter += 1
        else:
            _logger.debug("With reference")
            idx = None
            testGroup = referenceElement+ " " + referenceTransitions.split()[0]
            for i, group in enumerate(fitresult['result']['groups']):
                if group == testGroup:
                    idx = i
            if idx is None:
                raise ValueError("Invalid reference:  <%s> <%s>" %\
                                    (referenceElement, referenceTransitions))

            group = fitresult['result']['groups'][idx]
            referenceArea = fitresult['result'][group]['fitarea']
            referenceConcentrations = concentrationsResult['mass fraction'][group]
            goodIdx = results[nFreeBkg+idx] > 0
            massFractions[idx] = referenceConcentrations
            counter = 0
            for i, group in enumerate(fitresult['result']['groups']):
                if group.lower().startswith("scatter"):
                    _logger.debug("skept %s", group)
                    continue
                labels.append(group)
                goodI = results[nFreeBkg+i] > 0
                tmp = results[nFreeBkg+idx][goodI]
                massFractions[counter][goodI] = (results[nFreeBkg+i][goodI]/(tmp + (tmp == 0))) *\
                            ((referenceArea/fitresult['result'][group]['fitarea']) *\
                            (concentrationsResult['mass fraction'][group]))
                counter += 1
                if len(concentrationsResult['layerlist']) > 1:
                    for layer in concentrationsResult['layerlist']:
                        labels.append((group, layer))
                        massFractions[counter][goodI] = (results[nFreeBkg+i][goodI]/(tmp + (tmp == 0))) *\
                            ((referenceArea/fitresult['result'][group]['fitarea']) *\
                            (concentrationsResult[layer]['mass fraction'][group]))
                        counter += 1
        return labels, massFractions


def getFileListFromPattern(pattern, begin, end, increment=None):
    if type(begin) == type(1):
        begin = [begin]
    if type(end) == type(1):
        end = [end]
    if len(begin) != len(end):
        raise ValueError(\
            "Begin list and end list do not have same length")
    if increment is None:
        increment = [1] * len(begin)
    elif type(increment) == type(1):
        increment = [increment]
    if len(increment) != len(begin):
        raise ValueError(
            "Increment list and begin list do not have same length")
    fileList = []
    if len(begin) == 1:
        for j in range(begin[0], end[0] + increment[0], increment[0]):
            fileList.append(pattern % (j))
    elif len(begin) == 2:
        for j in range(begin[0], end[0] + increment[0], increment[0]):
            for k in range(begin[1], end[1] + increment[1], increment[1]):
                fileList.append(pattern % (j, k))
    elif len(begin) == 3:
        raise ValueError("Cannot handle three indices yet.")
        for j in range(begin[0], end[0] + increment[0], increment[0]):
            for k in range(begin[1], end[1] + increment[1], increment[1]):
                for l in range(begin[2], end[2] + increment[2], increment[2]):
                    fileList.append(pattern % (j, k, l))
    else:
        raise ValueError("Cannot handle more than three indices.")
    return fileList


def prepareDataStack(fileList):
    if (not os.path.exists(fileList[0])) and \
        os.path.exists(fileList[0].split("::")[0]):
        # odo convention to get a dataset form an HDF5
        fname, dataPath = fileList[0].split("::")
        # compared to the ROI imaging tool, this way of reading puts data
        # into memory while with the ROI imaging tool, there is a check.
        if 0:
            import h5py
            h5 = h5py.File(fname, "r")
            dataStack = h5[dataPath][:]
            h5.close()
        else:
            from PyMca5.PyMcaIO import HDF5Stack1D
            # this way reads information associated to the dataset (if present)
            if dataPath.startswith("/"):
                pathItems = dataPath[1:].split("/")
            else:
                pathItems = dataPath.split("/")
            if len(pathItems) > 1:
                scanlist = ["/" + pathItems[0]]
                selection = {"y":"/" + "/".join(pathItems[1:])}
            else:
                selection = {"y":dataPath}
                scanlist = None
            print(selection)
            print("scanlist = ", scanlist)
            dataStack = HDF5Stack1D.HDF5Stack1D([fname],
                                                selection,
                                                scanlist=scanlist)
    else:
        from PyMca5.PyMca import EDFStack
        dataStack = EDFStack.EDFStack(fileList, dtype=numpy.float32)
    return dataStack


def main():
    import sys
    import getopt
    options     = ''
    longoptions = ['cfg=', 'outdir=', 'concentrations=', 'weight=', 'refit=',
                   'tif=', 'edf=', 'csv=', 'h5=', 'dat=',
                   'filepattern=', 'begin=', 'end=', 'increment=',
                   'outroot=', 'outentry=', 'outprocess=',
                   'diagnostics=', 'debug=', 'overwrite=', 'multipage=']
    try:
        opts, args = getopt.getopt(
                     sys.argv[1:],
                     options,
                     longoptions)
    except:
        print(sys.exc_info()[1])
        sys.exit(1)
    outputDir = None
    outputRoot = ""
    fileEntry = ""
    fileProcess = ""
    refit = None
    filepattern = None
    begin = None
    end = None
    increment = None
    backend = None
    weight = 0
    tif = 0
    edf = 0
    csv = 0
    h5 = 1
    dat = 0
    concentrations = 0
    diagnostics = 0
    debug = 0
    overwrite = 1
    multipage = 0
    for opt, arg in opts:
        if opt == '--cfg':
            configurationFile = arg
        elif opt == '--begin':
            if "," in arg:
                begin = [int(x) for x in arg.split(",")]
            else:
                begin = [int(arg)]
        elif opt == '--end':
            if "," in arg:
                end = [int(x) for x in arg.split(",")]
            else:
                end = int(arg)
        elif opt == '--increment':
            if "," in arg:
                increment = [int(x) for x in arg.split(",")]
            else:
                increment = int(arg)
        elif opt == '--filepattern':
            filepattern = arg.replace('"', '')
            filepattern = filepattern.replace("'", "")
        elif opt == '--outdir':
            outputDir = arg
        elif opt == '--weight':
            weight = int(arg)
        elif opt == '--refit':
            refit = int(arg)
        elif opt == '--concentrations':
            concentrations = int(arg)
        elif opt == '--diagnostics':
            diagnostics = int(arg)
        elif opt == '--outroot':
            outputRoot = arg
        elif opt == '--outentry':
            fileEntry = arg
        elif opt == '--outprocess':
            fileProcess = arg
        elif opt in ('--tif', '--tiff'):
            tif = int(arg)
        elif opt == '--edf':
            edf = int(arg)
        elif opt == '--csv':
            csv = int(arg)
        elif opt == '--h5':
            h5 = int(arg)
        elif opt == '--dat':
            dat = int(arg)
        elif opt == '--debug':
            debug = int(arg)
        elif opt == '--overwrite':
            overwrite = int(arg)
        elif opt == '--multipage':
            multipage = int(arg)

    logging.basicConfig()
    if debug:
        _logger.setLevel(logging.DEBUG)
    else:
        _logger.setLevel(logging.INFO)
    if filepattern is not None:
        if (begin is None) or (end is None):
            raise ValueError(\
                "A file pattern needs at least a set of begin and end indices")
    if filepattern is not None:
        fileList = getFileListFromPattern(filepattern, begin, end, increment=increment)
    else:
        fileList = args
    if refit is None:
        refit = 0
        _logger.warning("--refit=%d taken as default" % refit)
    if len(fileList):
        dataStack = prepareDataStack(fileList)
    else:
        print("OPTIONS:", longoptions)
        sys.exit(0)
    if outputDir is None:
        print("RESULTS WILL NOT BE SAVED: No output directory specified")

    t0 = time.time()
    fastFit = FastXRFLinearFit()
    fastFit.setFitConfigurationFile(configurationFile)
    print("Main configuring Elapsed = % s " % (time.time() - t0))

    outbuffer = OutputBuffer(outputDir=outputDir,
                             outputRoot=outputRoot,
                             fileEntry=fileEntry,
                             fileProcess=fileProcess,
                             diagnostics=diagnostics,
                             tif=tif, edf=edf, csv=csv,
                             h5=h5, dat=dat,
                             multipage=multipage,
                             overwrite=overwrite)

    from PyMca5.PyMcaMisc import ProfilingUtils
    with ProfilingUtils.profile(memory=debug, time=debug):
        with outbuffer.saveContext():
            outbuffer = fastFit.fitMultipleSpectra(y=dataStack,
                                                weight=weight,
                                                refit=refit,
                                                concentrations=concentrations,
                                                outbuffer=outbuffer)
        print("Total Elapsed = % s " % (time.time() - t0))


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    main()