1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
|
#/*##########################################################################
# Copyright (C) 2004-2020 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "Tonn Rueter & V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """
Due to uncertainties in the experimental set-up, recorded data might be shifted unrelated
to physical effects probed in the experiment. The present plug-in calculates this shift and
corrects the data using a variety of different methods.
Usage and Description
---------------------
Data that is subject to a shift must be loaded into the plot window of the main application.
The plug-in offers two ways to treat the data:
- A shortcut options, called *Perform FFT Shift*, calculates the shift and directly corrects
the data.
- The *Show Alignment Window* option, showing a window that allows for specification of the
shift and alignment methods, as well as offering the possibility to save calculated shifts
and load previously calculated shifts from a file.
It is also possible to enter shift values by hand.
Once the *Alignment Window* is opened, the alignment method and the shift method must be specified.
The alignment method specifies how the shift is calculated, while the shift method determines
how the shift is applied to the data.
The table shows three columns:
- The first one shows the plot legend of the data that will be
corrected by the shift method.
- The second column shows the plot legend from which the shift
is calculated.
- The third column shows the shift values calculated by the alignment method in
units of the plot windows x-axis.
While columns one and two can not be edited, shift values
can be entered by hand. Another way of setting the shift values is to load them from a existing
\*.shift file using the Load button.
Once the shift values are set, they can either be directly applied to the data present in the
plot window, using the *Apply* button, or the data can be stored in memory. The latter options allow
to use a reference signal recorded during the experiment, to determine the shift and then apply
the shift values to a different set of data.
.. note::
In order to match different sets of data to another, as necessary in the case of a
reference signal, the order in which the data is added to the plot window is crucial. If one
switches between two sets of data, where one set aligns the other one, it is highly encouraged
to consult the table in the *Alignment window* to check if every element in the two different
sets of data is assigned to its correct counterpart before applying the shift.
If the data in the plot window is zoomed-in to a distinct feature, only this range of the data
is used to calculate the shift.
Methods used by the plug-in
---------------------------
Alignment methods are used to calculate the shift. Present methods include FFT, MAX, FIT and
FIT DRV.
*FFT*:
Uses the Fourier Transform of the curves to calculate their cross-correlation. The maximum
of the correlation is determined, and yields the shift value. This method is the default option.
Since it is not affected by the peak shape, it is fast and numerically robust.
.. note:: The shifts are given in real space values.
*MAX*:
Determines the maximum of each curve. The shift is given by the differences in the x-position
of the maxima. Note that this method is highly vulnerable to noise in the data and spikes.
*FIT*:
This method subtracts a background from the data using the SNIP algorithm and searches for peaks
in the data. For every curve, the single most pronounced feature is selected.
The peak is fitted by a Gaussian model. The shifts are then given by differences in the x-offsets
of the fitted Gaussians.
*FIT DRV*:
Uses the same procedure as the FIT method. However the fit is applied to the first derivative of
the data. This method is only recommended for X-ray absorption data.
Shift methods are used to apply the calculated shift to the data. Present methods include *Shift x-range*
and *Inverse FFT shift*.
*Shift x-range*:
This method adds the calculated shift value to every point.
*Inverse FFT shift*:
Takes the Fourier Transform of a curve and multiplies the shift as a phase factor. The multiplication
of a phase factor in Fourier space translates to a shift in the x-range in real space. The shifted data
is given by the inverse Fourier transform.
.. note::
For this process, the data needs to have a equidistant x-range. If this is not the case, the data
will be interpolated on a equidistant x-range. Due to the cyclic nature of the Fourier transform, this
method is recommended for data that has linear background.
"""
import numpy
import logging
import sys
import traceback
from PyMca5.PyMcaGui import PyMcaQt as qt
from PyMca5 import PyMcaDataDir, PyMcaDirs
from PyMca5.PyMcaGui.io import PyMcaFileDialogs
from PyMca5.PyMcaIO import ConfigDict
from PyMca5.PyMcaMath.fitting import SpecfitFunctions as SF
from PyMca5.PyMcaMath import SNIPModule as snip
from PyMca5.PyMcaMath.fitting.Gefit import LeastSquaresFit as LSF
from PyMca5.PyMcaMath.fitting.SpecfitFuns import gauss
from PyMca5.PyMcaMath.fitting import SpecfitFuns
from os.path import join as pathjoin
_logger = logging.getLogger(__name__)
try:
from PyMca5 import Plugin1DBase
except ImportError:
_logger.warning("WARNING:AlignmentScanPlugin import from somewhere else")
from . import Plugin1DBase
class AlignmentWidget(qt.QDialog):
_storeCode = 2
_colLegend = 0 # Column number of current legends from plot window
_colShiftLegend = 1 # Column number of curve from which the shift was calculated
_colShift = 2 # Shift
def __init__(self, parent, ddict, llist, plugin):
qt.QDialog.__init__(self, parent)
self.setWindowTitle('Alignment Window')
nCols = 2
nRows = len(ddict)
self.plugin = plugin
# Buttons
buttonSave = qt.QPushButton('Save')
buttonSave.setToolTip('Shortcut: CTRL+S\n'
+'Save shifts to file')
buttonSave.setShortcut(qt.QKeySequence(qt.Qt.CTRL + qt.Qt.Key_S))
buttonLoad = qt.QPushButton('Load')
buttonLoad.setToolTip('Shortcut: CTRL+O\n'
+'Load shifts from file')
buttonLoad.setShortcut(qt.QKeySequence(qt.Qt.CTRL + qt.Qt.Key_O))
buttonStore = qt.QPushButton('Store')
buttonStore.setToolTip('Shortcut: ALT+S\n'
+'Store shifts in memory.\n')
buttonStore.setShortcut(qt.QKeySequence(qt.Qt.ALT + qt.Qt.Key_S))
buttonApply = qt.QPushButton('Apply')
buttonApply.setToolTip('Shortcut: CTRL+Return\n'
+'Apply shift to curves present'
+' in the plot window')
buttonApply.setShortcut(qt.QKeySequence(qt.Qt.CTRL + qt.Qt.Key_Return))
buttonCancel = qt.QPushButton('Cancel')
buttonCancel.setToolTip('Shortcut: ESC\n'
+'Closes the window')
buttonCalc = qt.QPushButton('Calculate')
buttonCalc.setToolTip('Shortcut: F5')
buttonCalc.setShortcut(qt.QKeySequence(qt.Qt.Key_F5))
# Table
self.shiftTab = qt.QTableWidget(nRows, nCols)
self.shiftTab.verticalHeader().hide()
self.shiftTab.horizontalHeader().setStretchLastSection(True)
self.shiftTab.setHorizontalHeaderLabels(['Legend','Shift'])
# Shift Method selector
self.shiftMethodComboBox = qt.QComboBox()
self.shiftMethodComboBox.addItems(
['Shift x-range',
'Inverse FFT shift'])
shiftMethodToolTip =\
('Select the method that shifts the spectra\n\n'
+'Shift x-range:\n'
+' Directly applies the shift to the data\'s\n'
+' x-range\n'
+'Inverse FFT shift:\n'
+' Shifts the spectra by multiplying a\n'
+' phase factor to their Fourier transform. The result is\n'
+' transformed back to real space. Recommended for data with\n'
+' resp. regions with constant background.')
self.shiftMethodComboBox.setToolTip(shiftMethodToolTip)
# Alignment Method selector
self.alignmentMethodComboBox = qt.QComboBox()
self.alignmentMethodComboBox.addItems(
['FFT',
'MAX',
'FIT',
'FIT DRV'])
alignmentMethodToolTip =\
('Select the method used to calculate the shift is calculated.\n\n'
+'FFT:\n'
+' Calculates the correlation between two curves using its\n'
+' Fourier transform. The shift is proportional to the distance of\n'
+' the correlation function\'s maxima.\n'
+'MAX:\n'
+' Determines the shift as the distance between the maxima of\n'
+' two peaks\n'
+'FIT:\n'
+' Guesses the most prominent feature in a spectrum and tries\n'
+' to fit it with a Gaussian peak. Before the fit is perform, the\n'
+' background is substracted. The shift is given by the difference\n'
+' of the center of mass between two peaks.\n'
+'FIT DRV:\n'
+' Like FIT, but the fit is performed on the derivate of the\n'
+' spectrum. Recommended procedure for XAFS data.')
self.alignmentMethodComboBox.setToolTip(alignmentMethodToolTip)
# Fill table with data
self.setDict(llist, ddict)
self.shiftTab.resizeColumnToContents(self._colLegend)
self.shiftTab.resizeColumnToContents(self._colShiftLegend)
#Layouts
topLayout = qt.QHBoxLayout()
topLayout.addWidget(buttonCalc)
topLayout.addWidget(qt.HorizontalSpacer())
topLayout.addWidget(qt.QLabel('Alignment method:'))
topLayout.addWidget(self.alignmentMethodComboBox)
topLayout.addWidget(qt.QLabel('Shift method:'))
topLayout.addWidget(self.shiftMethodComboBox)
buttonLayout = qt.QHBoxLayout()
buttonLayout.addWidget(buttonSave)
buttonLayout.addWidget(buttonLoad)
buttonLayout.addWidget(qt.HorizontalSpacer())
buttonLayout.addWidget(buttonApply)
buttonLayout.addWidget(buttonStore)
buttonLayout.addWidget(buttonCancel)
mainLayout = qt.QVBoxLayout()
mainLayout.addLayout(topLayout)
mainLayout.addWidget(self.shiftTab)
mainLayout.addLayout(buttonLayout)
mainLayout.setContentsMargins(1,1,1,1)
self.setLayout(mainLayout)
# Connects
self.shiftTab.cellChanged.connect(self.validateInput)
buttonApply.clicked.connect(self.accept)
buttonCancel.clicked.connect(self.reject)
buttonStore.clicked.connect(self.store)
buttonSave.clicked.connect(self.saveDict)
buttonLoad.clicked.connect(self.loadDict)
# ..to Plugin instance
buttonCalc.clicked.connect(self._triggerCalculateShiftClickedSlot)
self.alignmentMethodComboBox.activated['QString'].\
connect(self.triggerCalculateShift)
def _triggerCalculateShiftClickedSlot(self):
return self.triggerCalculateShift()
def triggerCalculateShift(self, methodName=None):
# Need to call the plugin instance to perform calculations
try:
if methodName is not None:
self.plugin.setAlignmentMethod(methodName)
llist, ddict = self.plugin.calculateShifts()
self.setDict(llist, ddict)
except:
msg = qt.QMessageBox(self)
msg.setIcon(qt.QMessageBox.Critical)
msg.setWindowTitle("Plugin error")
msg.setText("An error has occured while executing the plugin:")
msg.setInformativeText(str(sys.exc_info()[1]))
msg.setDetailedText(traceback.format_exc())
msg.exec()
def store(self):
self.done(self._storeCode)
def loadDict(self):
openDir = PyMcaDirs.outputDir
filters = 'PyMca (*.shift)'
filename = qt.QFileDialog.\
getOpenFileName(self,
'Load Shifts obtained from FFTAlignment',
openDir,
filters)
# PyQt5 gives back a tuple
if type(filename) in [type([]), type(())]:
filename = filename[0]
if len(filename) == 0:
return
inDict = ConfigDict.ConfigDict()
try:
inDict.read(filename)
except IOError:
msg = qt.QMessageBox()
msg.setTitle('FFTAlignment Load Error')
msg.setText('Unable to read shifts form file \'%s\''%filename)
msg.exec()
return
if 'Shifts' not in inDict.keys():
# Only if the shift file consists exclusively of ShiftList
orderedLegends = [legend for legend in self.plugin.getOrder()]
try:
shiftList = inDict['ShiftList']['ShiftList']
except KeyError:
msg = qt.QMessageBox()
msg.setWindowTitle('FFTAlignment Load Error')
msg.setText('No shift information found in file \'%s\''%filename)
msg.exec()
ddict = dict(zip(orderedLegends, shiftList))
llist = self.plugin.getOrder()
else:
llist = inDict['Order']['Order']
ddict = inDict['Shifts']
self.setDict(llist, ddict)
def saveDict(self):
saveDir = PyMcaDirs.outputDir
ffilter = ['PyMca (*.shift)']
try:
filename = PyMcaFileDialogs.\
getFileList(parent=self,
filetypelist=ffilter,
message='Save FFT Alignment shifts',
mode='SAVE',
single=True)[0]
except IndexError:
# Returned list is empty
return False
if len(filename) == 0:
return False
if not str(filename).endswith('.shift'):
filename += '.shift'
_logger.debug('saveOptions -- Filename: "%s"', filename)
currentOrder = self.plugin.getOrder()
outDict = ConfigDict.ConfigDict()
llist, ddict = self.getDict()
outDict['Order'] = {'Order': currentOrder}
outDict['Shifts'] = ddict
outDict['ShiftList'] = {
'ShiftList':[ddict[legend] for legend in currentOrder]}
try:
outDict.write(filename)
except IOError:
msg = qt.QMessageBox()
msg.setWindowTitle('FFTAlignment Save Error')
msg.setText('Unable to write configuration to \'%s\''%filename)
msg.exec()
return True
def getAlignmentMethodName(self):
return self.alignmentMethodComboBox.currentText()
def getShiftMethodName(self):
return self.shiftMethodComboBox.currentText()
def getDict(self):
llist, ddict = [], {}
for idx in range(self.shiftTab.rowCount()):
# Loop through rows
legend = self.shiftTab.item(idx, self._colLegend)
shiftLegend = self.shiftTab.item(idx, self._colShiftLegend)
value = self.shiftTab.item(idx, self._colShift)
try:
floatValue = float(value.text())
except ValueError:
floatValue = float('NaN')
ddict[str(legend.text())] = floatValue
llist.append(str(shiftLegend.text()))
return llist, ddict
def setDict(self, llist, ddict):
# Order in which shift are shown is not
# necessarily the order in which they were
# added to plot window
curr = self.plugin.getOrder()
keys = llist
vals = [ddict[k] for k in keys]
# ..or just leave them in random ddict order
#dkeys = ddict.keys()
#dvals = ddict.values()
self.shiftTab.clear()
self.shiftTab.setColumnCount(3)
self.shiftTab.setHorizontalHeaderLabels(
['Legend','Shift calculated from','Shift'])
self.shiftTab.setRowCount(len(keys))
if len(ddict) == 0:
return
for j, dlist in enumerate([curr, keys, vals]):
# j denotes the column of the table
# j = 0: Legend, set cells inactive (greyed out)
# j = 1: Legend from which the shift was calculated (greyed out)
# j = 2: Shift values, set cells active
for i in range(len(dlist)):
# i loops through the contents of each list
# setting every row of the table
if (j == 0) or (j == 1):
elem = qt.QTableWidgetItem(dlist[i])
elem.setFlags(qt.Qt.ItemIsSelectable)
elif j == 2:
elem = qt.QTableWidgetItem(str(dlist[i]))
elem.setTextAlignment(qt.Qt.AlignRight)
elem.setTextAlignment(qt.Qt.AlignRight + qt.Qt.AlignVCenter)
elem.setFlags(qt.Qt.ItemIsEditable | qt.Qt.ItemIsEnabled)
else:
elem = qt.QTableWidgetItem('')
self.shiftTab.setItem(i,j, elem)
self.shiftTab.resizeColumnToContents(self._colLegend)
self.shiftTab.resizeColumnToContents(self._colShiftLegend)
self.shiftTab.resizeRowsToContents()
def validateInput(self, row, col):
if (col == 0) or (col == 1):
return
elif col == 2:
item = self.shiftTab.item(row, 2)
try:
floatValue = float(item.text())
item.setText('%.6g'%floatValue)
except ValueError:
floatValue = float('NaN')
item.setText(str(floatValue))
class AdvancedAlignmentScanPlugin(Plugin1DBase.Plugin1DBase):
'''It calculates and corrects shifts using a variety of different methods.'''
def __init__(self, plotWindow, **kw):
Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw)
self.__randomization = True
self.__methodKeys = []
self.methodDict = {}
function = self.calculateAndApplyShifts
method = "Perform FFT Alignment"
text = "Performs FFT based alignment and\n"
text += "inverse FFT based shift"
info = text
icon = None
self.methodDict[method] = [function,
info,
icon]
self.__methodKeys.append(method)
function = self.showShifts
method = "Show Alignment Window"
text = "Displays the calculated shifts and\n"
text += "allows to fine tune the plugin"
info = text
icon = None
self.methodDict[method] = [function,
info,
icon]
self.__methodKeys.append(method)
function = self.showDocs
method = "Show documentation"
text = "Shows the plug-ins documentation\n"
text += "in a browser window"
info = text
icon = None
self.methodDict[method] = [function,
info,
icon]
self.__methodKeys.append(method)
self.alignmentMethod = self.calculateShiftsFFT
self.shiftMethod = self.fftShift
self.shiftDict = {}
self.shiftList = []
#Methods to be implemented by the plugin
def getMethods(self, plottype=None):
"""
A list with the NAMES associated to the callable methods
that are applicable to the specified plot.
Plot type can be "SCAN", "MCA", None, ...
"""
# if self.__randomization:
# return self.__methodKeys[0:1] + self.__methodKeys[2:]
# else:
# return self.__methodKeys[1:]
return self.__methodKeys
def getMethodToolTip(self, name):
"""
Returns the help associated to the particular method name or None.
"""
return self.methodDict[name][1]
def getMethodPixmap(self, name):
"""
Returns the pixmap associated to the particular method name or None.
"""
return None
def applyMethod(self, name):
"""
The plugin is asked to apply the method associated to name.
"""
return self.methodDict[name][0]()
def calculateAndApplyShifts(self):
# Assure that FFT alignment & shift methods are set
self.alignmentMethod = self.calculateShiftsFFT
self.shiftMethod = self.fftShift
self.calculateShifts()
self.applyShifts()
# Reset shift Dictionary and legend List
self.shiftDict = {}
self.shiftList = []
def calculateShifts(self):
"""
Generic alignment method, executes the method
that is set under self.alignmentMethod.
Choices are:
- calculateShiftsFit
- calculateShiftsFFT
- calculateShiftsMax
Sets self.shiftList and self.shiftDict
"""
self.shiftList, self.shiftDict = self.alignmentMethod()
return self.shiftList, self.shiftDict
def getOrder(self):
"""
Returns the legends of the curves in the plot winow
in the order they were added.
"""
return self.getAllCurves(just_legend=True)
# BEGIN Alignment Methods
def calculateShiftsFitDerivative(self):
return self.calculateShiftsFit(derivative=True)
def calculateShiftsFit(self, derivative=False, thr=30):
retDict = {}
retList = []
curves = self.getAllCurves()
nCurves = len(curves)
if nCurves < 2:
raise ValueError("At least 2 curves needed")
# Check if scan window is zoomed in
xmin, xmax = self.getGraphXLimits()
# Determine largest overlap between curves
xmin0, xmax0 = self.getXLimits(x for (x,y,leg,info) in curves)
if xmin0 > xmin:
xmin = xmin0
if xmax0 < xmax:
xmax = xmax0
_logger.debug('calculateShiftsFit -- xmin = %.3f, xmax = %.3f', xmin, xmax)
# Get active curve
activeCurve = self.getActiveCurve()
if activeCurve is None:
# If active curve is not set, continue with first curve
activeCurve = curves[0]
else:
activeLegend = activeCurve[2]
idx = list.index([curve[2] for curve in curves],
activeLegend)
activeCurve = curves[idx]
x0, y0 = activeCurve[0], activeCurve[1]
idx = numpy.nonzero((xmin <= x0) & (x0 <= xmax))[0]
x0 = numpy.take(x0, idx)
y0 = numpy.take(y0, idx)
if derivative:
# Take first derivative
y0 = numpy.diff(y0)/numpy.diff(x0)
x0 = .5 * (x0[1:] + x0[:-1])
peak0 = self.findPeaks(x0, y0, .80, derivative)
if peak0:
xp0, yp0, fwhm0, fitrange0 = peak0
else:
raise ValueError("No peak identified in '%s'"%activeCurve[2])
fitp0, chisq0, sigma0 = LSF(gauss,
numpy.asarray([yp0, xp0, fwhm0]),
xdata=x0[fitrange0],
ydata=y0[fitrange0])
if derivative:
_logger.debug('calculateShiftsFit -- Results (Leg, PeakPos, Shift):')
else:
_logger.debug('calculateShiftsFitDerivative -- Results (Leg, PeakPos, Shift):')
for x,y,legend,info in curves:
idx = numpy.nonzero((xmin <= x) & (x <= xmax))[0]
x = numpy.take(x, idx)
y = numpy.take(y, idx)
if derivative:
# Take first derivative
y = numpy.diff(y)/numpy.diff(x)
x = .5 * (x[1:] + x[:-1])
peak = self.findPeaks(x, y, .80, derivative)
if peak:
xp, yp, fwhm, fitrange = peak
else:
raise ValueError("No peak identified in '%s'"%activeCurve[2])
try:
fitp, chisq, sigma = LSF(gauss,
numpy.asarray([yp, xp, fwhm]),
xdata=x[fitrange],
ydata=y[fitrange])
# Shift is difference in peak's x position
shift = fitp0[1] - fitp[1]
except numpy.linalg.linalg.LinAlgError:
msg = qt.QMessageBox(None)
msg.setWindowTitle('Alignment Error')
msg.setText('Singular matrix encountered during least squares fit.')
msg.setStandardButtons(qt.QMessageBox.Ok)
msg.exec()
shift = float('NaN')
fitp, chisq, sigma = [None, None, None], 0., 0.
key = legend
retList.append(key)
retDict[key] = shift
_logger.debug('\t%s\t%.3f\t%.3f', legend, fitp[1], shift)
return retList, retDict
def calculateShiftsMax(self):
retDict = {}
retList = []
curves = self.getAllCurves()
nCurves = len(curves)
if nCurves < 2:
raise ValueError("At least 2 curves needed")
return
# Check if plotwindow is zoomed in
xmin, xmax = self.getGraphXLimits()
# Determine largest overlap between curves
xmin0, xmax0 = self.getXLimits(x for (x,y,leg,info) in curves)
if xmin0 > xmin:
xmin = xmin0
if xmax0 < xmax:
xmax = xmax0
# Get active curve
activeCurve = self.getActiveCurve()
if activeCurve is None:
# If active curve is not set, continue with first curve
activeCurve = curves[0]
else:
activeLegend = activeCurve[2]
idx = list.index([curve[2] for curve in curves],
activeLegend)
activeCurve = curves[idx]
x0, y0 = activeCurve[0], activeCurve[1]
idx = numpy.nonzero((xmin <= x0) & (x0 <= xmax))[0]
x0 = numpy.take(x0, idx)
y0 = numpy.take(y0, idx)
# Determine the index of maximum in active curve
shift0 = numpy.argmax(y0)
_logger.debug('calculateShiftsMax -- Results:')
_logger.debug('\targmax(y) shift')
for x, y, legend, info in curves:
idx = numpy.nonzero((xmin <= x) & (x <= xmax))[0]
x = numpy.take(x, idx)
y = numpy.take(y, idx)
shifty = numpy.argmax(y)
shift = x0[shift0] - x[shifty]
key = legend
retList.append(key)
retDict[key] = shift
_logger.debug('\t%d %.3f', x[shifty], shift)
return retList, retDict
def calculateShiftsFFT(self, portion=.95):
retDict = {}
retList = []
curves = self.interpolate()
nCurves = len(curves)
if nCurves < 2:
raise ValueError("At least 2 curves needed")
# Check if scan window is zoomed in
xmin, xmax = self.getGraphXLimits()
# Determine largest overlap between curves
xmin0, xmax0 = self.getXLimits(x for (x,y,leg,info) in curves)
if xmin0 > xmin:
xmin = xmin0
if xmax0 < xmax:
xmax = xmax0
_logger.debug('calculateShiftsFFT -- xmin = %.3f, xmax = %.3f', xmin, xmax)
# Get active curve
activeCurve = self.getActiveCurve()
if activeCurve is None:
# If active curve is not set, continue with first curve
activeCurve = curves[0]
else:
activeLegend = activeCurve[2]
idx = list.index([curve[2] for curve in curves],
activeLegend)
activeCurve = curves[idx]
x0, y0 = activeCurve[0], activeCurve[1]
idx = numpy.nonzero((xmin <= x0) & (x0 <= xmax))[0]
x0 = numpy.take(x0, idx)
y0 = self.normalize(y0)
y0 = numpy.take(y0, idx)
fft0 = numpy.fft.fft(y0)
_logger.debug('calculateShiftsFFT -- results (Legend len(idx) shift):')
for x,y,legend,info in curves:
idx = numpy.nonzero((x >= xmin) & (x <= xmax))[0]
x = numpy.take(x, idx)
y = numpy.take(y, idx)
ffty = numpy.fft.fft(y)
shiftTmp = numpy.fft.ifft(fft0 * ffty.conjugate()).real
shiftPhase = numpy.zeros(shiftTmp.shape, dtype=shiftTmp.dtype)
m = shiftTmp.size//2
shiftPhase[m:] = shiftTmp[:-m]
shiftPhase[:m] = shiftTmp[-m:]
# Normalize shiftPhase to standardize thresholding
shiftPhase = self.normalize(shiftPhase)
# Thresholding
xShiftMax = shiftPhase.argmax()
left, right = xShiftMax, xShiftMax
threshold = portion * shiftPhase.max()
while (shiftPhase[left] > threshold)&\
(shiftPhase[right] > threshold):
left -= 1
right += 1
idx = numpy.arange(left, right+1, 1, dtype=int)
# The shift is determined by center-of-mass around shiftMax
shiftTmp = (shiftPhase[idx] * idx/shiftPhase[idx].sum()).sum()
shift = (shiftTmp - m) * (x[1] - x[0])
key = legend
retList.append(key)
retDict[key] = shift
_logger.debug('\t%s\t%d\t%f', legend, len(idx), shift)
return retList, retDict
# END Alignment Methods
def applyShifts(self):
"""
Generic shift method. The method shifts curves
according to the shift stored in self.shiftDict
and executes the method stored in self.shiftMethod.
Curves are sorted with respect to their legend,
the values of self.shiftDict are sorted with
respect to their key.
"""
if len(self.shiftDict) == 0:
msg = qt.QMessageBox(None)
msg.setWindowTitle('Alignment Error')
msg.setText('No shift data present.')
msg.setStandardButtons(qt.QMessageBox.Ok)
msg.exec()
return False
# Check if interpolation is needed
if self.shiftMethod == self.fftShift:
curves = self.interpolate()
else:
curves = self.getAllCurves()
if len(self.shiftList) != len(curves):
msg = qt.QMessageBox(None)
msg.setWindowTitle('Alignment Error')
msg.setText(
"""Number of shifts does not match the number of curves.
Do you want to continue anyway?""")
msg.setStandardButtons(qt.QMessageBox.Ok)
msg.setStandardButtons(qt.QMessageBox.Ok | qt.QMessageBox.Cancel)
msg.setDefaultButton(qt.QMessageBox.Ok)
if msg.exec() != qt.QMessageBox.Ok:
return False
_logger.debug('applyShifts -- Shifting ...')
for idx, (x, y, legend, info) in enumerate(curves):
shift = self.shiftDict[legend]
if shift is None:
_logger.debug('\tCurve \'%s\' not found in shiftDict\n%s',
legend, str(self.shiftDict))
continue
if shift == float('NaN'):
_logger.debug('\tCurve \'%s\' has NaN shift', legend)
continue
# Limit shift to zoomed in area
xmin, xmax = self.getGraphXLimits()
mask = numpy.nonzero((xmin<=x) & (x<=xmax))[0]
# Execute method stored in self.shiftMethod
xShifted, yShifted = self.shiftMethod(shift, x[mask], y[mask])
if idx == 0:
replace = True
else:
replace = False
if idx == (len(curves)-1):
replot = True
else:
replot = False
# Check if scan number is adopted by new curve
_logger.debug('\'%s\' -- shifts -> \'%s\' by %f', self.shiftList[idx], legend, shift)
#selectionlegend = info.get('selectionlegend', legend)
selectionlegend = legend
self.addCurve(xShifted, yShifted,
(selectionlegend + ' SHIFT'),
info=info,
replace=replace,
replot=replot)
return True
# BEGIN Shift Methods
def fftShift(self, shift, x, y):
yShifted = numpy.fft.ifft(
numpy.exp(-2.0*numpy.pi*numpy.sqrt(numpy.complex(-1))*\
numpy.fft.fftfreq(len(x), d=x[1]-x[0])*shift)*numpy.fft.fft(y))
return x, yShifted.real
def xShift(self, shift, x, y):
return x+shift, y
# END Shift Methods
def showShifts(self):
"""
Creates an instance of Alignment Widget that
allows to
- Calculate, display & save/store shifts
- Load existing shift data
- Select different alignment and shift methods
"""
# Empty shift table in the beginning
widget = AlignmentWidget(None, self.shiftDict, self.shiftList, self)
ret = widget.exec()
if ret == 1:
# Result code Apply
self.shiftList, self.shiftDict = widget.getDict()
# self.shiftList = self.getOrder()
self.setShiftMethod(widget.getShiftMethodName())
self.applyShifts()
self.shiftDict = {}
self.shiftList = []
elif ret == 2:
# Result code Store
self.shiftList, self.shiftDict = widget.getDict()
self.shiftList = self.getOrder() # Remember order of scans
self.setShiftMethod(widget.getShiftMethodName())
else:
# Dialog is canceled
self.shiftDict = {}
self.shiftList = []
widget.destroy() # Widget should be destroyed after finishing method
return
# BEGIN Helper Methods
def setShiftMethod(self, methodName):
"""
Method receives methodName from AlignmentWidget
instance and assigns the according shift method.
"""
_logger.debug('setShiftMethod -- %s', methodName)
methodName = str(methodName)
if methodName == 'Inverse FFT shift':
self.shiftMethod = self.fftShift
elif methodName == 'Shift x-range':
self.shiftMethod = self.xShift
else:
# Unknown method name, use fftShift as default
self.shiftMethod = self.fftShift
def setAlignmentMethod(self, methodName):
"""
Method receives methodName from AlignmentWidget
instance and assigns the according alignment method.
"""
_logger.debug('setAlignmentMethod -- %s', methodName)
methodName = str(methodName)
if methodName == 'FFT':
self.alignmentMethod = self.calculateShiftsFFT
elif methodName == 'MAX':
self.alignmentMethod = self.calculateShiftsMax
elif methodName == 'FIT':
self.alignmentMethod = self.calculateShiftsFit
elif methodName == 'FIT DRV':
self.alignmentMethod = self.calculateShiftsFitDerivative
else:
# Unknown method name, use fftShift as default
self.alignmentMethod = self.calculateShiftsFFT
def getAllCurves(self, just_legend=False):
"""
Ensures that the x-range of the curves
is strictly monotonically increasing.
Conserves curves legend and info dictionary.
"""
curves = Plugin1DBase.Plugin1DBase.getAllCurves(self, just_legend=just_legend)
if just_legend:
return curves
processedCurves = []
for curve in curves:
x, y, legend, info = curve[0:4]
xproc = x[:]
yproc = y[:]
# Sort
idx = numpy.argsort(xproc, kind='mergesort')
xproc = numpy.take(xproc, idx)
yproc = numpy.take(yproc, idx)
# Ravel, Increasing
xproc = xproc.ravel()
idx = numpy.nonzero((xproc[1:] > xproc[:-1]))[0]
xproc = numpy.take(xproc, idx)
yproc = numpy.take(yproc, idx)
processedCurves += [(xproc, yproc, legend, info)]
return processedCurves
def interpolate(self, factor=1.):
"""
Input
-----
factor : float
factor used to oversample existing data, use
with caution.
Interpolates all existing curves to an equidistant
x-range using the either the active or the first
curve do determine the number of data points.
Use this method instead of self.getAllCurves() when
performin FFT related tasks.
Returns
-------
interpCurves : ndarray
Array containing the interpolated curves shown
in the plot window.
Format: [(x0, y0, legend0, info0), ...]
"""
curves = self.getAllCurves()
if len(curves) < 1:
_logger.debug('interpolate -- no curves present')
raise ValueError("At least 1 curve needed")
return
activeCurve = self.getActiveCurve()
if not activeCurve:
activeCurve = curves[0]
else:
activeLegend = activeCurve[2]
idx = list.index([curve[2] for curve in curves],
activeLegend)
activeCurve = curves[idx]
activeX, activeY, activeLegend, activeInfo = activeCurve[0:4]
# Determine average spaceing between Datapoints
step = numpy.average(numpy.diff(activeX))
xmin, xmax = self.getXLimits([x for (x,y,leg,info) in curves],
overlap=False)
num = int(factor * numpy.ceil((xmax-xmin)/step))
# Create equidistant x-range, exclude first and last point
xeq = numpy.linspace(xmin, xmax, num, endpoint=False)[:-1]
# Interpolate on sections of xeq
interpCurves = []
for (x,y,legend,info) in curves:
idx = numpy.nonzero((x.min()<xeq) & (xeq<x.max()))[0]
xi = numpy.take(xeq, idx)
yi = SpecfitFuns.interpol([x], y, xi.reshape(-1,1), y.min())
yi.shape = -1
interpCurves += [(xi, yi, legend, info)]
return interpCurves
def getXLimits(self, values, overlap=True):
"""
Input
-----
overlap : bool
True -> returns minimal and maximal x-values
that are that are still lie within the
x-ranges of all curves in plot window
False -> returns minimal and maximal x-values of
all curves in plot window
Returns
-------
xmin0, xmax0 : float
"""
if overlap:
xmin0, xmax0 = -numpy.inf, numpy.inf
else:
xmin0, xmax0 = numpy.inf, -numpy.inf
for x in values:
xmin = x.min()
xmax = x.max()
if overlap:
if xmin > xmin0:
xmin0 = xmin
if xmax < xmax0:
xmax0 = xmax
else:
if xmin < xmin0:
xmin0 = xmin
if xmax > xmax0:
xmax0 = xmax
_logger.debug('getXLimits -- overlap = %s, xmin = %.3f, xmax =%.3f',
overlap, xmin0, xmax0)
return xmin0, xmax0
def normalize(self, y):
"""
Normalizes spectrum to values between zero and one.
"""
ymax, ymin = y.max(), y.min()
return (y-ymin)/(ymax-ymin)
def findPeaks(self, x, y, thr, derivative):
"""
Input
-----
x,y : ndarrays
Arrays contain curve intformation
thr : float
Threshold in percent of normalized maximum
derivative : bool
The derivative of a curve is being fitted
Finds most prominent feature contained in y
and tries to estimate starting parameters for a
Gaussian least squares fit (LSF). Recommends values
used to fit the Gaussian.
Return
------
xpeak, ypeak, fwhm : float
Estimated values for x-position, amplitude
and width of the Gaussian
fwhmIdx : ndarray
Indices determine the range on which the LSF
is performed
"""
# Use SNIP algorithm for background substraction &
# seek method for peak detection
sffuns = SF.SpecfitFunctions()
if derivative:
# Avoid BG substraction & normalization if
# fitting the derivate of a curve
ybg = y
ynorm = y/(abs(y.max())+abs(y.min()))
else:
ybg = y-snip.getSnip1DBackground(y, len(y)//thr) # USER INPUT!!!
# Normalize background substracted data to
# standardize the yscaling of seek method
#ynorm = (ybg - ybg.min())/(ybg.max()-ybg.min())
ynorm = self.normalize(ybg)
# Replace by max()?
try:
# Calculate array with all peak indices
peakIdx = numpy.asarray(sffuns.seek(ybg, yscaling=1000.), dtype=int)
# Extract highest peak
sortIdx = y[peakIdx].argsort()[-1]
except IndexError:
_logger.debug('No peaks found..')
return None
except SystemError:
_logger.debug('Peak search failed. Continue with y maximum')
peakIdx = [ybg.argmax()]
sortIdx = 0
xpeak = float(x[peakIdx][sortIdx])
ypeak = float(y[peakIdx][sortIdx])
ypeak_norm = float(ynorm[peakIdx][sortIdx])
ypeak_bg = float(ybg[peakIdx][sortIdx])
# Estimate FWHM
fwhmIdx = numpy.nonzero(ynorm >= thr*ypeak_norm)[0]
#fwhmIdx = numpy.nonzero(ybg >= thr*ypeak_bg)[0]
# Underestimates FWHM
x0, x1 = x[fwhmIdx].min(), x[fwhmIdx].max()
fwhm = x1 - x0
return xpeak, ypeak, fwhm, fwhmIdx
# END Helper Methods
def showDocs(self):
"""
Displays QTextBrowser showing the documentation
"""
helpFileName = pathjoin(PyMcaDataDir.PYMCA_DOC_DIR,
"HTML",
"AdvancedAlignmentScanPlugin.html")
self.helpFileBrowser = qt.QTextBrowser()
self.helpFileBrowser.setWindowTitle('Alignment Scan Plug-in Documentation')
self.helpFileBrowser.setLineWrapMode(qt.QTextEdit.FixedPixelWidth)
self.helpFileBrowser.setLineWrapColumnOrWidth(500)
self.helpFileBrowser.resize(520,300)
try:
helpFileHandle = open(helpFileName)
helpFileHTML = helpFileHandle.read()
helpFileHandle.close()
self.helpFileBrowser.setHtml(helpFileHTML)
except IOError:
msg = qt.QMessageBox()
msg.setWindowTitle('Alignment Scan Error')
msg.setText('No help file found.')
msg.exec()
_logger.debug('XMCDWindow -- init: Unable to read help file')
self.helpFileBrowser = None
if self.helpFileBrowser is not None:
self.helpFileBrowser.show()
self.helpFileBrowser.raise_()
MENU_TEXT = "Advanced Alignment Plugin"
def getPlugin1DInstance(plotWindow, **kw):
ob = AdvancedAlignmentScanPlugin(plotWindow)
return ob
if __name__ == "__main__":
app = qt.QApplication([])
a = AlignmentWidget()
a.show()
x = numpy.arange(250, 750, 2, dtype=float)
y1 = 1.0 + 50.0 * numpy.exp(-0.001*(x-500)**2) + 2.*numpy.random.random(250)
y2 = 1.0 + 20.5 * numpy.exp(-0.005*(x-600)**2) + 2.*numpy.random.random(250)
app.exec()
|