1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
#/*##########################################################################
# Copyright (C) 2004-2022 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__doc__ = """
Fast XRF Linear fit of data stack by:
- fixing non-linear parameters to its starting values
- processing the data in chunks instead of point by point
"""
import sys
import os
import numpy
import logging
import traceback
from PyMca5 import StackPluginBase
from PyMca5.PyMcaPhysics import FastXRFLinearFit
from PyMca5.PyMcaPhysics import XRFBatchFitOutput
from PyMca5.PyMcaGui import FastXRFLinearFitWindow
from PyMca5.PyMcaGui import CalculationThread
from PyMca5.PyMcaGui import StackPluginResultsWindow
from PyMca5.PyMcaGui import PyMca_Icons as PyMca_Icons
from PyMca5.PyMcaGui import PyMcaQt as qt
_logger = logging.getLogger(__name__)
class FastXRFLinearFitStackPlugin(StackPluginBase.StackPluginBase):
"""
Fast XRF Linear fit of data stack by:
- fixing non-linear parameters to its starting values
- processing the data in chunks instead of point by point
"""
def __init__(self, stackWindow, **kw):
if _logger.getEffectiveLevel() == logging.DEBUG:
StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG)
StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw)
self.methodDict = {}
function = self.calculate
info = "Fast XRF Linear fit of data stack"
icon = PyMca_Icons.fit
self.methodDict["Fit Stack"] =[function,
info,
icon]
function = self._showWidget
info = "Show last results"
icon = PyMca_Icons.brushselect
self.methodDict["Show"] =[function,
info,
icon]
self.__methodKeys = ["Fit Stack", "Show"]
self.configurationWidget = None
self.fitInstance = None
self._widget = None
self.thread = None
def stackUpdated(self):
_logger.debug("FastXRFLinearFitStackPlugin.stackUpdated() called")
self._widget = None
def selectionMaskUpdated(self):
if self._widget is None:
return
if self._widget.isHidden():
return
mask = self.getStackSelectionMask()
self._widget.setSelectionMask(mask)
def mySlot(self, ddict):
_logger.debug("mySlot ", ddict['event'], ddict.keys())
if ddict['event'] == "selectionMaskChanged":
self.setStackSelectionMask(ddict['current'])
elif ddict['event'] == "addImageClicked":
self.addImage(ddict['image'], ddict['title'])
elif ddict['event'] == "addAllClicked":
for i in range(len(ddict["images"])):
self.addImage(ddict['images'][i], ddict['titles'][i])
elif ddict['event'] == "removeImageClicked":
self.removeImage(ddict['title'])
elif ddict['event'] == "replaceImageClicked":
self.replaceImage(ddict['image'], ddict['title'])
elif ddict['event'] == "resetSelection":
self.setStackSelectionMask(None)
#Methods implemented by the plugin
def getMethods(self):
if self._widget is None:
return [self.__methodKeys[0]]
else:
return self.__methodKeys
def getMethodToolTip(self, name):
return self.methodDict[name][1]
def getMethodPixmap(self, name):
return self.methodDict[name][2]
def applyMethod(self, name):
return self.methodDict[name][0]()
# The specific part
def calculate(self):
if self.configurationWidget is None:
self.configurationWidget = \
FastXRFLinearFitWindow.FastXRFLinearFitDialog()
ret = self.configurationWidget.exec()
if ret:
self._executeFunctionAndParameters()
def _executeFunctionAndParameters(self):
self._parameters = self.configurationWidget.getParameters()
self._widget = None
if self.fitInstance is None:
self.fitInstance = FastXRFLinearFit.FastXRFLinearFit()
#self._fitConfigurationFile="E:\DATA\COTTE\CH1777\G4-4720eV-NOWEIGHT-Constant-batch.cfg"
if _logger.getEffectiveLevel() == logging.DEBUG:
self.thread = CalculationThread.CalculationThread(\
calculation_method=self.actualCalculation)
self.thread.result = self.actualCalculation()
self.threadFinished()
else:
self.thread = CalculationThread.CalculationThread(\
calculation_method=self.actualCalculation)
self.thread.finished.connect(self.threadFinished)
self.thread.start()
message = "Please wait. Calculation going on."
CalculationThread.waitingMessageDialog(self.thread,
parent=self.configurationWidget,
message=message)
def actualCalculation(self):
activeCurve = self.getActiveCurve()
if activeCurve is not None:
x, spectrum, legend, info = activeCurve
else:
x = None
spectrum = None
if not self.isStackFinite():
# one has to check for NaNs in the used region(s)
# for the time being only in the global image
# spatial_mask = numpy.isfinite(image_data)
spatial_mask = numpy.isfinite(self.getStackOriginalImage())
# WDN: any effect?
stack = self.getStackDataObject()
fitparams = self._parameters['fit'].copy()
fitConfigurationFile = fitparams.pop('configuration')
self.fitInstance.setFitConfigurationFile(fitConfigurationFile)
if fitparams['weight']:
# force calculation of the unnormalized sum spectrum
spectrum = None
if stack.x in [None, []]:
x = None
else:
x = stack.x[0]
outparams = self._parameters['output']
outbuffer = XRFBatchFitOutput.OutputBuffer(**outparams)
outbuffer = self.fitInstance.fitMultipleSpectra(x=x,
y=stack,
ysum=spectrum,
outbuffer=outbuffer,
save=False, # do it later
**fitparams)
return outbuffer
def threadFinished(self):
try:
self._threadFinished()
except:
msg = qt.QMessageBox()
msg.setIcon(qt.QMessageBox.Critical)
msg.setInformativeText(str(sys.exc_info()[1]))
msg.setDetailedText(traceback.format_exc())
msg.exec()
def _threadFinished(self):
result = self.thread.result
self.thread = None
if type(result) == type((1,)):
#if we receive a tuple there was an error
if len(result):
if result[0] == "Exception":
# somehow this exception is not caught
raise Exception(result[1], result[2])#, result[3])
return
# Show results
with result.bufferContext(update=True):
if 'molarconcentrations' in result:
imageNames = result.labels('parameters', labeltype='title') + \
result.labels('molarconcentrations', labeltype='title')
images = numpy.concatenate((result['parameters'],
result['molarconcentrations']), axis=0)
elif 'massfractions' in result:
imageNames = result.labels('parameters', labeltype='title') + \
result.labels('massfractions', labeltype='title')
images = numpy.concatenate((result['parameters'],
result['massfractions']), axis=0)
else:
imageNames = result.labels('parameters', labeltype='title')
images = result['parameters']
self._widget = StackPluginResultsWindow.StackPluginResultsWindow(\
usetab=False)
self._widget.buildAndConnectImageButtonBox(replace=True,
multiple=True)
qt = StackPluginResultsWindow.qt
self._widget.sigMaskImageWidgetSignal.connect(self.mySlot)
self._widget.setStackPluginResults(images,
image_names=imageNames)
self._showWidget()
# Save results
result.save()
def _showWidget(self):
if self._widget is None:
return
#Show
self._widget.show()
self._widget.raise_()
#update
self.selectionMaskUpdated()
MENU_TEXT = "Fast XRF Linear Fit"
def getStackPluginInstance(stackWindow, **kw):
ob = FastXRFLinearFitStackPlugin(stackWindow)
return ob
|