1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
#/*##########################################################################
# Copyright (C) 2004-2022 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
"""
This plugin provides methods to replace curves by their median filter average.
3-, 5-, 7- or 9-points filters are provided. The filter can be applied on the
data in its original order, or in a randomized order.
"""
__author__ = "V.A. Sole - ESRF"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import numpy
from PyMca5 import Plugin1DBase
from PyMca5.PyMcaMath.fitting import SpecfitFuns
from PyMca5.PyMcaMath.PyMcaSciPy.signal.median import medfilt1d
class MedianFilterScanPlugin(Plugin1DBase.Plugin1DBase):
'''Methods to replace curves by their median filter average.'''
def __init__(self, plotWindow, **kw):
Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw)
self.__randomization = True
self.__methodKeys = []
self.methodDict = {}
text = "Use a random order instead\n"
text += "of the plotting order."
info = text
icon = None
function = self.toggleRandomization
method = "Toggle Randomization OFF"
self.methodDict[method] = [function,
info,
icon]
self.__methodKeys.append(method)
method = "Toggle Randomization ON"
text = "Use plotting order instead\n"
text += "of a random order."
self.methodDict[method] = [function,
info,
icon]
self.__methodKeys.append(method)
function = self.applyMedianFilter
for i in [3, 5, 7, 9]:
info = "Replace curves by their %d-point median filter average" % i
method = "Replace by %d-point median filter" % i
self.methodDict[method] = [function,
info,
icon]
self.__methodKeys.append(method)
#Methods to be implemented by the plugin
def getMethods(self, plottype=None):
"""
A list with the NAMES associated to the callable methods
that are applicable to the specified plot.
Plot type can be "SCAN", "MCA", None, ...
"""
if self.__randomization:
return self.__methodKeys[0:1] + self.__methodKeys[2:]
else:
return self.__methodKeys[1:]
def getMethodToolTip(self, name):
"""
Returns the help associated to the particular method name or None.
"""
return self.methodDict[name][1]
def getMethodPixmap(self, name):
"""
Returns the pixmap associated to the particular method name or None.
"""
return None
def applyMethod(self, name):
"""
The plugin is asked to apply the method associated to name.
"""
if name.startswith('Toggle'):
return self.methodDict[name][0]()
n = int(name.split('-')[0].split()[-1])
return self.applyMedianFilter(width=n)
def toggleRandomization(self):
if self.__randomization:
self.__randomization = False
else:
self.__randomization = True
def applyMedianFilter(self, width=3):
curves = self.getAllCurves()
nCurves = len(curves)
if nCurves < width:
raise ValueError("At least %d curves needed" % width)
return
if self.__randomization:
indices = numpy.random.permutation(nCurves)
else:
indices = range(nCurves)
# get active curve
activeCurve = self.getActiveCurve()
if activeCurve is None:
activeCurve = curves[0]
# apply between graph limits
x0 = activeCurve[0][:]
y0 = activeCurve[1][:]
xmin, xmax =self.getGraphXLimits()
idx = numpy.nonzero((x0 >= xmin) & (x0 <= xmax))[0]
x0 = numpy.take(x0, idx)
y0 = numpy.take(y0, idx)
#sort the values
idx = numpy.argsort(x0, kind='mergesort')
x0 = numpy.take(x0, idx)
y0 = numpy.take(y0, idx)
#remove duplicates
x0 = x0.ravel()
idx = numpy.nonzero((x0[1:] > x0[:-1]))[0]
x0 = numpy.take(x0, idx)
y0 = numpy.take(y0, idx)
x0.shape = -1, 1
nChannels = x0.shape[0]
# built a couple of temporary array of spectra for handy access
tmpArray = numpy.zeros((nChannels, nCurves), numpy.float64)
medianSpectra = numpy.zeros((nChannels, nCurves), numpy.float64)
i = 0
for idx in indices:
x, y, legend, info = curves[idx][0:4]
#sort the values
x = x[:]
idx = numpy.argsort(x, kind='mergesort')
x = numpy.take(x, idx)
y = numpy.take(y, idx)
#take the portion of x between limits
idx = numpy.nonzero((x>=xmin) & (x<=xmax))[0]
if not len(idx):
# no overlap
continue
x = numpy.take(x, idx)
y = numpy.take(y, idx)
#remove duplicates
x = x.ravel()
idx = numpy.nonzero((x[1:] > x[:-1]))[0]
x = numpy.take(x, idx)
y = numpy.take(y, idx)
x.shape = -1, 1
if numpy.allclose(x, x0):
# no need for interpolation
pass
else:
# we have to interpolate
x.shape = -1
y.shape = -1
xi = x0[:]
y = SpecfitFuns.interpol([x], y, xi, y0.min())
y.shape = -1
tmpArray[:, i] = y
i += 1
# now perform the median filter
for i in range(nChannels):
medianSpectra[i, :] = medfilt1d(tmpArray[i,:],
kernel_size=width)
tmpArray = None
# now get the final spectrum
y = medianSpectra.sum(axis=1) / nCurves
x0.shape = -1
y.shape = x0.shape
legend = "%d Median from %s to %s" % (width,
curves[0][2],
curves[-1][2])
self.addCurve(x0,
y,
legend=legend,
info=None,
replot=True,
replace=True)
MENU_TEXT = "Median Filter Average"
def getPlugin1DInstance(plotWindow, **kw):
ob = MedianFilterScanPlugin(plotWindow)
return ob
if __name__ == "__main__":
from PyMca5.PyMcaGui import PyMcaQt as qt
app = qt.QApplication([])
from PyMca5.PyMcaGraph import Plot
x = numpy.arange(100.)
y = x * x
plot = Plot.Plot()
plot.addCurve(x, y, "dummy")
plot.addCurve(x+100, -x*x)
plugin = getPlugin1DInstance(plot)
for method in plugin.getMethods():
print(method, ":", plugin.getMethodToolTip(method))
plugin.applyMethod(plugin.getMethods()[0])
curves = plugin.getAllCurves()
for curve in curves:
print(curve[2])
print("LIMITS = ", plugin.getGraphYLimits())
#app = qt.QApplication()
|