File: MedianFilterScanPlugin.py

package info (click to toggle)
pymca 5.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,392 kB
  • sloc: python: 155,456; ansic: 15,843; makefile: 116; sh: 73; xml: 55
file content (235 lines) | stat: -rw-r--r-- 8,530 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#/*##########################################################################
# Copyright (C) 2004-2022 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
"""
This plugin provides methods to replace curves by their median filter average.
3-, 5-, 7- or 9-points filters are provided. The filter can be applied on the
data in its original order, or in a randomized order.

"""

__author__ = "V.A. Sole - ESRF"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import numpy

from PyMca5 import Plugin1DBase
from PyMca5.PyMcaMath.fitting import SpecfitFuns
from PyMca5.PyMcaMath.PyMcaSciPy.signal.median import medfilt1d

class MedianFilterScanPlugin(Plugin1DBase.Plugin1DBase):
    '''Methods to replace curves by their median filter average.'''
    def __init__(self, plotWindow, **kw):
        Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw)
        self.__randomization = True
        self.__methodKeys = []
        self.methodDict = {}
        text = "Use a random order instead\n"
        text += "of the plotting order."
        info = text
        icon = None
        function = self.toggleRandomization
        method = "Toggle Randomization OFF"
        self.methodDict[method] = [function,
                                   info,
                                   icon]
        self.__methodKeys.append(method)
        method = "Toggle Randomization ON"
        text = "Use plotting order instead\n"
        text += "of a random order."
        self.methodDict[method] = [function,
                                   info,
                                   icon]
        self.__methodKeys.append(method)
        function = self.applyMedianFilter
        for i in [3, 5, 7, 9]:
            info = "Replace curves by their %d-point median filter average" % i
            method = "Replace by %d-point median filter" % i
            self.methodDict[method] = [function,
                                       info,
                                       icon]
            self.__methodKeys.append(method)

    #Methods to be implemented by the plugin
    def getMethods(self, plottype=None):
        """
        A list with the NAMES  associated to the callable methods
        that are applicable to the specified plot.

        Plot type can be "SCAN", "MCA", None, ...
        """
        if self.__randomization:
            return self.__methodKeys[0:1] +  self.__methodKeys[2:]
        else:
            return self.__methodKeys[1:]

    def getMethodToolTip(self, name):
        """
        Returns the help associated to the particular method name or None.
        """
        return self.methodDict[name][1]

    def getMethodPixmap(self, name):
        """
        Returns the pixmap associated to the particular method name or None.
        """
        return None

    def applyMethod(self, name):
        """
        The plugin is asked to apply the method associated to name.
        """
        if name.startswith('Toggle'):
            return self.methodDict[name][0]()
        n = int(name.split('-')[0].split()[-1])
        return self.applyMedianFilter(width=n)

    def toggleRandomization(self):
        if self.__randomization:
            self.__randomization = False
        else:
            self.__randomization = True

    def applyMedianFilter(self, width=3):
        curves = self.getAllCurves()
        nCurves = len(curves)
        if nCurves < width:
            raise ValueError("At least %d curves needed" % width)
            return

        if self.__randomization:
            indices = numpy.random.permutation(nCurves)
        else:
            indices = range(nCurves)

        # get active curve
        activeCurve = self.getActiveCurve()
        if activeCurve is None:
            activeCurve = curves[0]

        # apply between graph limits
        x0 = activeCurve[0][:]
        y0 = activeCurve[1][:]
        xmin, xmax =self.getGraphXLimits()
        idx = numpy.nonzero((x0 >= xmin) & (x0 <= xmax))[0]
        x0 = numpy.take(x0, idx)
        y0 = numpy.take(y0, idx)

        #sort the values
        idx = numpy.argsort(x0, kind='mergesort')
        x0 = numpy.take(x0, idx)
        y0 = numpy.take(y0, idx)

        #remove duplicates
        x0 = x0.ravel()
        idx = numpy.nonzero((x0[1:] > x0[:-1]))[0]
        x0 = numpy.take(x0, idx)
        y0 = numpy.take(y0, idx)

        x0.shape = -1, 1
        nChannels = x0.shape[0]

        # built a couple of temporary array of spectra for handy access
        tmpArray = numpy.zeros((nChannels, nCurves), numpy.float64)
        medianSpectra = numpy.zeros((nChannels, nCurves), numpy.float64)
        i = 0
        for idx in indices:
            x, y, legend, info = curves[idx][0:4]
            #sort the values
            x = x[:]
            idx = numpy.argsort(x, kind='mergesort')
            x = numpy.take(x, idx)
            y = numpy.take(y, idx)

            #take the portion of x between limits
            idx = numpy.nonzero((x>=xmin) & (x<=xmax))[0]
            if not len(idx):
                # no overlap
                continue
            x = numpy.take(x, idx)
            y = numpy.take(y, idx)

            #remove duplicates
            x = x.ravel()
            idx = numpy.nonzero((x[1:] > x[:-1]))[0]
            x = numpy.take(x, idx)
            y = numpy.take(y, idx)
            x.shape = -1, 1
            if numpy.allclose(x, x0):
                # no need for interpolation
                pass
            else:
                # we have to interpolate
                x.shape = -1
                y.shape = -1
                xi = x0[:]
                y = SpecfitFuns.interpol([x], y, xi, y0.min())
            y.shape = -1
            tmpArray[:, i] = y
            i += 1

        # now perform the median filter
        for i in range(nChannels):
            medianSpectra[i, :] = medfilt1d(tmpArray[i,:],
                                            kernel_size=width)
        tmpArray = None
        # now get the final spectrum
        y = medianSpectra.sum(axis=1) / nCurves
        x0.shape = -1
        y.shape = x0.shape
        legend = "%d Median from %s to %s" % (width,
                                              curves[0][2],
                                              curves[-1][2])
        self.addCurve(x0,
                      y,
                      legend=legend,
                      info=None,
                      replot=True,
                      replace=True)

MENU_TEXT = "Median Filter Average"
def getPlugin1DInstance(plotWindow, **kw):
    ob = MedianFilterScanPlugin(plotWindow)
    return ob

if __name__ == "__main__":
    from PyMca5.PyMcaGui import PyMcaQt as qt
    app = qt.QApplication([])
    from PyMca5.PyMcaGraph import Plot
    x = numpy.arange(100.)
    y = x * x
    plot = Plot.Plot()
    plot.addCurve(x, y, "dummy")
    plot.addCurve(x+100, -x*x)
    plugin = getPlugin1DInstance(plot)
    for method in plugin.getMethods():
        print(method, ":", plugin.getMethodToolTip(method))
    plugin.applyMethod(plugin.getMethods()[0])
    curves = plugin.getAllCurves()
    for curve in curves:
        print(curve[2])
    print("LIMITS = ", plugin.getGraphYLimits())
    #app = qt.QApplication()