1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
#/*##########################################################################
# Copyright (C) 2004-2020 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "Mauro Rovezzi - ID26, V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import sys
import numpy
import logging
_logger = logging.getLogger(__name__)
try:
from matplotlib.mlab import griddata
GRIDDATA = "matplotlib"
except ImportError:
# matplotlib 3.x got rid of griddata
try:
from scipy.interpolate import griddata
GRIDDATA = "scipy"
except ImportError:
GRIDDATA = None
_logger.info("matplotlib.mlab.griddata not available")
from PyMca5 import Plugin1DBase
from PyMca5.PyMcaGui import MaskImageWidget
from PyMca5.PyMcaGui import PyMcaQt as qt
class MultipleScanToMeshPlugin(Plugin1DBase.Plugin1DBase):
"""
This plugin attempts to create an image from multiple scans.
It is aimed at dealing with:
- ID26 RIXS Data
- Meshes generated line by line.
"""
def __init__(self, plotWindow, **kw):
Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw)
self.methodDict = {}
self.methodDict['RIXS Etransfer'] = [self._energyTransfer,
"Show RIXS E transfer image",
None]
self.methodDict['RIXS Eout'] = [self._energyAnalyzer,
"Show RIXS E out image",
None]
self.methodDict['Mesh'] = [self._mesh,
"Show mesh image",
None]
self._rixsWidget = None
#Methods to be implemented by the plugin
def getMethods(self, plottype=None):
"""
A list with the NAMES associated to the callable methods
that are applicable to the specified plot.
Plot type can be "SCAN", "MCA", None, ...
"""
names = list(self.methodDict.keys())
names.sort()
return names
def getMethodToolTip(self, name):
"""
Returns the help associated to the particular method name or None.
"""
return self.methodDict[name][1]
def getMethodPixmap(self, name):
"""
Returns the pixmap associated to the particular method name or None.
"""
return self.methodDict[name][2]
def applyMethod(self, name):
"""
The plugin is asked to apply the method associated to name.
"""
try:
self.methodDict[name][0]()
except:
_logger.error(sys.exc_info())
raise
def _mesh(self):
return self._energyTransfer(mode="mesh")
def _energyAnalyzer(self):
return self._energyTransfer(mode="energyout")
def _energyTransfer(self, mode="energytransfer"):
allCurves = self.getAllCurves()
nCurves = len(allCurves)
if nCurves < 2:
msg = "RIXS scans are built combining several single scans"
raise ValueError(msg)
self._xLabel = self.getGraphXLabel()
self._yLabel = self.getGraphYLabel()
if self._xLabel not in \
["energy", "Energy", "Spec.Energy", "arr_hdh_ene", "Mono.Energy"]:
msg = "X axis does not correspond to a supported RIXS scan"
raise ValueError(msg)
motorNames = allCurves[0][3]["MotorNames"]
CHESS = False
if self._xLabel == "Spec.Energy":
# ID26
fixedMotorMne = "Mono.Energy"
elif (self._xLabel == "Energy") and ("xes_dn_ana" in motorNames):
# CHESS
fixedMotorMne = "xes_dn_ana"
CHESS = True
msg = "Please use CHESS provided plugin. Contact beamline staff"
raise RuntimeError(msg)
elif (self._xLabel == "energy") and ("xes_en" in motorNames):
# BM20 case
fixedMotorMne = "xes_en"
elif "Spec.Energy" in motorNames:
# ID26
fixedMotorMne = "Spec.Energy"
else:
# TODO: Show a combobox to allow the selection of the "motor"
msg = "Cannot automatically recognize motor mnemomnic to be used"
raise ValueError(msg)
fixedMotorIndex = allCurves[0][3]["MotorNames"].index(fixedMotorMne)
#get the min and max values of the curves
if fixedMotorMne != "Mono.Energy":
xMin = allCurves[0][0][0] # ID26 data are already ordered
xMax = allCurves[0][0][-1]
minValues = numpy.zeros((nCurves,), numpy.float64)
minValues[0] = xMin
nData = len(allCurves[0][0])
i = 0
for curve in allCurves[1:]:
i += 1
tmpMin = curve[0][0]
tmpMax = curve[0][-1]
minValues[i] = tmpMin
if tmpMin < xMin:
xMin = tmpMin
if tmpMax > xMax:
xMax =tmpMax
nData += len(curve[0])
else:
info = allCurves[0][3]
xMin = info["MotorValues"][fixedMotorIndex]
xMax = xMin
nData = 0
i = 0
minValues = numpy.zeros((nCurves,), numpy.float64)
for curve in allCurves:
info = curve[3]
tmpMin = info['MotorValues'][fixedMotorIndex]
tmpMax = info['MotorValues'][fixedMotorIndex]
minValues[i] = tmpMin
if tmpMin < xMin:
xMin = tmpMin
if tmpMax > xMax:
xMax =tmpMax
nData += len(curve[0])
i += 1
#sort the curves
orderIndex = minValues.argsort()
#print "ORDER INDEX = ", orderIndex
# express data in eV
if (xMax - xMin) < 5.0 :
# it seems data need to be multiplied
factor = 1000.
else:
factor = 1.0
motor2Values = numpy.zeros((nCurves,), numpy.float64)
xData = numpy.zeros((nData,), numpy.float32)
yData = numpy.zeros((nData,), numpy.float32)
zData = numpy.zeros((nData,), numpy.float32)
start = 0
for i in range(nCurves):
idx = orderIndex[i]
curve = allCurves[idx]
info = curve[3]
nPoints = max(curve[0].shape)
end = start + nPoints
x = curve[0]
z = curve[1]
x.shape = -1
z.shape = -1
if fixedMotorMne == "Mono.Energy":
xData[start:end] = info["MotorValues"][fixedMotorIndex] * factor
yData[start:end] = x * factor
elif CHESS:
xData[start:end] = x * factor
#yData[start:end] = info["MotorValues"][fixedMotorIndex]
thetaDeg = 78.1119 + 0.5 * (info["MotorValues"][fixedMotorIndex] + 5.25)
yData[start:end] = 12398.4 / (1.656446 * numpy.sin(numpy.pi*thetaDeg/180.))
else:
xData[start:end] = x * factor
yData[start:end] = info["MotorValues"][fixedMotorIndex] * factor
zData[start:end] = z
start = end
# construct the grid in steps of eStep eV
eStep = 0.05
n = int((xMax - xMin) * (factor / eStep))
grid0 = numpy.linspace(xMin * factor, xMax * factor, n)
grid1 = numpy.linspace(yData.min(), yData.max(), n)
# create the meshgrid
xx, yy = numpy.meshgrid(grid0, grid1)
if 0:
# get the interpolated values
etData = xData - yData
grid3 = numpy.linspace(etData.min(), etData.max(), n)
xx, yy = numpy.meshgrid(grid0, grid3)
try:
zz = griddata(xData, etData, zData, xx, yy)
except RuntimeError:
zz = griddata(xData, etData, zData, xx, yy, interp='linear')
# show them
if self._rixsWidget is None:
self._rixsWidget = MaskImageWidget.MaskImageWidget(\
imageicons=False,
selection=False,
profileselection=True,
scanwindow=self)
shape = zz.shape
xScale = (xx.min(), (xx.max() - xx.min())/float(zz.shape[1]))
yScale = (yy.min(), (yy.max() - yy.min())/float(zz.shape[0]))
self._rixsWidget.setImageData(zz,
xScale=xScale,
yScale=yScale)
self._rixsWidget.setXLabel("Incident Energy (eV)")
self._rixsWidget.setYLabel("Energy Transfer (eV)")
self._rixsWidget.show()
elif 1:
if mode == "mesh":
etData = yData
else:
etData = xData - yData
grid3 = numpy.linspace(etData.min(), etData.max(), n)
# create the meshgrid
xx, yy = numpy.meshgrid(grid0, grid3)
# get the interpolated values
if GRIDDATA == "matplotlib":
try:
zz = griddata(xData, etData, zData, xx, yy)
except:
# Natural neighbor interpolation not always possible
zz = griddata(xData, etData, zData, xx, yy, interp='linear')
elif GRIDDATA == "scipy":
zz = griddata((xData, etData), zData, (xx, yy), method='cubic')
else:
raise RuntimeError("griddata function not available")
if self._rixsWidget is None:
self._rixsWidget = MaskImageWidget.MaskImageWidget(\
imageicons=False,
selection=False,
aspect=True,
profileselection=True,
scanwindow=self)
self._rixsWidget.setLineProjectionMode('X')
#actualMax = zData.max()
#actualMin = zData.min()
#zz = numpy.where(numpy.isfinite(zz), zz, actualMax)
shape = zz.shape
xScale = (xx.min(), (xx.max() - xx.min())/float(zz.shape[1]))
if mode == "energyout":
yScale = (yy.min() + yData.min(), (yy.max() - yy.min())/float(zz.shape[0]))
else:
yScale = (yy.min(), (yy.max() - yy.min())/float(zz.shape[0]))
self._rixsWidget.setXLabel("Incident Energy (eV)")
if mode == "mesh":
self._rixsWidget.setYLabel("Emitted Energy (eV)")
elif mode == "energyout":
self._rixsWidget.setYLabel("Emitted Energy (eV)")
else:
self._rixsWidget.setYLabel("Energy Transfer (eV)")
self._rixsWidget.setImageData(zz,
xScale=xScale,
yScale=yScale)
# self._rixsWidget.graph.replot()
self._rixsWidget.show()
self._rixsWidget.raise_()
return
MENU_TEXT = "MultipleScanToMeshPlugin"
def getPlugin1DInstance(plotWindow, **kw):
ob = MultipleScanToMeshPlugin(plotWindow)
return ob
if __name__ == "__main__":
from PyMca5.PyMcaGraph import Plot
app = qt.QApplication([])
#w = ConfigurationWidget()
#w.exec()
#sys.exit(0)
_logger.setLevel(logging.DEBUG)
x = numpy.arange(100.)
y = x * x
plot = Plot.Plot()
plot.addCurve(x, y, "dummy")
plot.addCurve(x+100, -x*x)
plugin = getPlugin1DInstance(plot)
for method in plugin.getMethods():
print(method, ":", plugin.getMethodToolTip(method))
plugin.applyMethod(plugin.getMethods()[0])
curves = plugin.getAllCurves()
for curve in curves:
print(curve[2])
print("LIMITS = ", plugin.getGraphYLimits())
|