File: NNMAStackPlugin.py

package info (click to toggle)
pymca 5.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,392 kB
  • sloc: python: 155,456; ansic: 15,843; makefile: 116; sh: 73; xml: 55
file content (300 lines) | stat: -rw-r--r-- 12,168 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#/*##########################################################################
# Copyright (C) 2004-2021 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
"""

A Stack plugin is a module that will be automatically added to the PyMca
stack windows in order to perform user defined operations on the data stack.

These plugins will be compatible with any stack window that provides the
functions:
    #data related
    getStackDataObject
    getStackData
    getStackInfo
    setStack

    #images related
    addImage
    removeImage
    replaceImage

    #mask related
    setSelectionMask
    getSelectionMask

    #displayed curves
    getActiveCurve
    getGraphXLimits
    getGraphYLimits

    #information method
    stackUpdated
    selectionMaskUpdated
"""
import numpy
import logging
from PyMca5 import StackPluginBase
from PyMca5.PyMcaGui import CalculationThread

from PyMca5.PyMcaGui.math.NNMAWindow import NNMAParametersDialog
from PyMca5.PyMcaGui import StackPluginResultsWindow
from PyMca5.PyMcaGui import PyMca_Icons

qt = StackPluginResultsWindow.qt
_logger = logging.getLogger(__name__)


class NNMAStackPlugin(StackPluginBase.StackPluginBase):
    def __init__(self, stackWindow, **kw):
        if _logger.getEffectiveLevel() == logging.DEBUG:
            StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG)
        StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw)
        self.methodDict = {'Calculate': [self.calculate,
                                         "Perform NNMA",
                                         None],
                           'Show': [self._showWidget,
                                    "Show last results",
                                    PyMca_Icons.brushselect]}
        self.__methodKeys = ['Calculate', 'Show']
        self.configurationWidget = None
        self.widget = None
        self.thread = None

    def stackUpdated(self):
        _logger.debug("NNMAStackPlugin.stackUpdated() called")
        self.configurationWidget = None
        self.widget = None

    def selectionMaskUpdated(self):
        if self.widget is None:
            return
        if self.widget.isHidden():
            return
        mask = self.getStackSelectionMask()
        self.widget.setSelectionMask(mask)

    def mySlot(self, ddict):
        _logger.debug("mySlot %s %s", ddict['event'], ddict.keys())
        if ddict['event'] == "selectionMaskChanged":
            self.setStackSelectionMask(ddict['current'])
        elif ddict['event'] == "addImageClicked":
            self.addImage(ddict['image'], ddict['title'])
        elif ddict['event'] == "addAllClicked":
            for i in range(len(ddict["images"])):
                self.addImage(ddict['images'][i], ddict['titles'][i])            
        elif ddict['event'] == "removeImageClicked":
            self.removeImage(ddict['title'])
        elif ddict['event'] == "replaceImageClicked":
            self.replaceImage(ddict['image'], ddict['title'])
        elif ddict['event'] == "resetSelection":
            self.setStackSelectionMask(None)

    #Methods implemented by the plugin
    def getMethods(self):
        if self.widget is None:
            return [self.__methodKeys[0]]
        else:
            return self.__methodKeys

    def getMethodToolTip(self, name):
        return self.methodDict[name][1]

    def getMethodPixmap(self, name):
        return self.methodDict[name][2]

    def applyMethod(self, name):
        return self.methodDict[name][0]()

    #The specific part
    def calculate(self):
        stack = self.getStackDataObject()
        mcaIndex = stack.info.get('McaIndex')
        shape = stack.data.shape
        stack = None
        if mcaIndex not in [-1, len(shape) - 1]:
            raise IndexError("NNMA does not support stacks of images yet")
            return
        if self.configurationWidget is None:
            self.configurationWidget = NNMAParametersDialog(None, regions=True)
            self._status = qt.QLabel(self.configurationWidget)
            self._status.setAlignment(qt.Qt.AlignHCenter)
            font = qt.QFont(self._status.font())
            font.setBold(True)
            self._status.setFont(font)
            self._status.setText("Ready")
            self.configurationWidget.layout().addWidget(self._status)
        activeCurve = self.getActiveCurve()
        if activeCurve is None:
            #I could get some defaults from the stack itslef
            raise ValueError("Please select an active curve")
            return
        x, spectrum, legend, info = activeCurve
        spectrumLength = int(max(spectrum.shape))
        oldValue = self.configurationWidget.nPC.value()
        self.configurationWidget.nPC.setMaximum(spectrumLength)
        self.configurationWidget.nPC.setValue(min(oldValue, spectrumLength))
        binningOptions = [1]
        for number in [2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 17, 19]:
            if (spectrumLength % number) == 0:
                binningOptions.append(number)
        # TODO: Should inform the configuration widget about the possibility
        #       to encounter non-finite data?
        ddict = {'options': binningOptions,
                 'binning': 1,
                 'method': 0}
        self.configurationWidget.setParameters(ddict)
        y = spectrum
        self.configurationWidget.setSpectrum(x, y, legend=legend, info=info)
        self.configurationWidget.show()
        self.configurationWidget.raise_()
        ret = self.configurationWidget.exec()
        if ret:
            self._executeFunctionAndParameters()

    def _executeFunctionAndParameters(self):
        _logger.debug("NNMAStackPlugin _executeFunctionAndParameters")
        self.widget = None
        self.thread = CalculationThread.CalculationThread(\
                            calculation_method=self.actualCalculation)
        self.thread.finished.connect(self.threadFinished)
        self.configurationWidget.show()
        message = "Please wait. NNMA Calculation going on."
        _logger.debug("NNMAStackPlugin starting thread")
        self.thread.start()
        _logger.debug("NNMAStackPlugin waitingMessageDialog")
        CalculationThread.waitingMessageDialog(self.thread,
                                message=message,
                                parent=self.configurationWidget)
        _logger.debug("NNMAStackPlugin waitingMessageDialog passed")

    def actualCalculation(self):
        _logger.debug("NNMAStackPlugin actualCalculation")
        nnmaParameters = self.configurationWidget.getParameters()
        self._status.setText("Calculation going on")
        self.configurationWidget.setEnabled(False)
        #self.configurationWidget.close()
        #At some point I should make sure I get directly the
        #function and the parameters from the configuration widget
        function = nnmaParameters['function']
        ddict = {}
        ddict.update(nnmaParameters['kw'])
        ddict['ncomponents'] = nnmaParameters['npc']
        ddict['binning'] = nnmaParameters['binning']
        ddict['spectral_mask'] = nnmaParameters['spectral_mask']
        #ddict['kmeans'] = False
        if not self.isStackFinite():
            # one has to check for NaNs in the used region(s)
            # for the time being only in the global image
            # spatial_mask = numpy.isfinite(image_data)
            spatial_mask = numpy.isfinite(self.getStackOriginalImage())
            ddict['mask'] = spatial_mask
        del nnmaParameters
        stack = self.getStackDataObject()
        if isinstance(stack, numpy.ndarray):
            if stack.data.dtype not in [numpy.float64, numpy.float32]:
                _logger.warning("WARNING: Non floating point data")
                text = "Calculation going on."
                text += " WARNING: Non floating point data."
                self._status.setText(text)

        oldShape = stack.data.shape
        result = function(stack, **ddict)
        if stack.data.shape != oldShape:
            stack.data.shape = oldShape
        return result

    def threadFinished(self):
        _logger.debug("NNMAStackPlugin threadFinished")
        result = self.thread.result
        self.thread = None
        if type(result) == type((1,)):
            #if we receive a tuple there was an error
            if len(result):
                if type(result[0]) == type("Exception"):
                    if result[0] == "Exception":
                        self._status.setText("Ready after calculation error")
                        self.configurationWidget.setEnabled(True)
                        raise Exception(result[1], result[2])
                        return
        self._status.setText("Ready")
        curve = self.configurationWidget.getSpectrum(binned=True)
        if curve not in [None, []]:
            xValues = curve[0]
        else:
            xValues = None
        self.configurationWidget.setEnabled(True)
        self.configurationWidget.close()

        images, eigenValues, eigenVectors = result
        imageNames = None
        vectorNames = None
        nimages = images.shape[0]
        imageNames = []
        vectorNames = []
        vectorTitles = []
        for i in range(nimages):
            imageNames.append("NNMA Image %02d" % i)
            vectorNames.append("NNMA Component %02d" % i)
            vectorTitles.append("%g %% explained intensity" %\
                                               eigenValues[i])
        _logger.debug("NNMAStackPlugin threadFinished. Create widget")
        self.widget = StackPluginResultsWindow.StackPluginResultsWindow(\
                                        usetab=True)
        _logger.debug("NNMAStackPlugin threadFinished. Widget created")
        self.widget.buildAndConnectImageButtonBox(replace=True,
                                                  multiple=True)
        qt = StackPluginResultsWindow.qt
        self.widget.sigMaskImageWidgetSignal.connect(self.mySlot)
        if xValues is not None:
            xValues = [xValues] * nimages
        self.widget.setStackPluginResults(images,
                                          spectra=eigenVectors,
                                          image_names=imageNames,
                                          xvalues=xValues,
                                          spectra_names=vectorNames,
                                          spectra_titles=vectorTitles)
        self._showWidget()

    def _showWidget(self):
        if self.widget is None:
            return
        #Show
        self.widget.show()
        self.widget.raise_()

        #update
        self.selectionMaskUpdated()

MENU_TEXT = "PyMca NNMA"


def getStackPluginInstance(stackWindow, **kw):
    ob = NNMAStackPlugin(stackWindow)
    return ob