1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
#/*##########################################################################
# Copyright (C) 2004-2020 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
"""
This plugin opens a window allowing to configure and compute the principal
component analysis.
Each spectrum is considered an *observation*, and each channel is considered
a *variable*.
The user can configure following parameters:
- PCA method (*Covariance, Expectation Max, Covariance Multiple Arrays*)
- Number of Principal Components
- Spectral Binning
- Spectral Regions
After the configuration dialog is validated, the eigenimages and the
eigenvectors are computed and displayed in another window.
"""
# TODO: explain PCA methods and regions
# TODO: provide a practical use case for a PCA. Isolating elements?
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import numpy
import logging
from PyMca5 import StackPluginBase
from PyMca5.PyMcaMath.mva import KMeansModule
from PyMca5.PyMcaGui import CalculationThread
from PyMca5.PyMcaGui.math.PCAWindow import PCAParametersDialog
from PyMca5.PyMcaGui import StackPluginResultsWindow
from PyMca5.PyMcaGui.pymca import RGBImageCalculator
from PyMca5.PyMcaGui import PyMca_Icons
qt = StackPluginResultsWindow.qt
_logger = logging.getLogger(__name__)
class PCAStackPlugin(StackPluginBase.StackPluginBase):
def __init__(self, stackWindow, **kw):
if _logger.getEffectiveLevel() == logging.DEBUG:
StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG)
StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw)
self.methodDict = {'Calculate': [self.calculate, "Perform PCA", None],
'Show': [self._showWidget,
"Show last results",
PyMca_Icons.brushselect]}
self.__methodKeys = ['Calculate', 'Show']
if 0 and KMeansModule.KMEANS:
self.methodDict['KMeans'] = [self._showKMeansWidget,
"KMeans",
None]
self.__methodKeys.append('KMeans')
self.configurationWidget = None
self.widget = None
self._kMeansWidget = None
self.thread = None
def stackUpdated(self):
_logger.debug("PCAStackPlugin.stackUpdated() called")
self.configurationWidget = None
self.widget = None
self._kMeansWidget = None
def selectionMaskUpdated(self):
if self.widget is None:
return
if self.widget.isHidden():
if self._kMeansWidget is None:
return
elif self._kMeansWidget.isHidden():
return
mask = self.getStackSelectionMask()
self.widget.setSelectionMask(mask)
if self._kMeansWidget:
self._kMeansWidget.graphWidget.setSelectionMask(mask)
def mySlot(self, ddict):
_logger.debug("mySlot %s %s", ddict['event'], ddict.keys())
if ddict['event'] == "selectionMaskChanged":
self.setStackSelectionMask(ddict['current'])
elif ddict['event'] == "addImageClicked":
self.addImage(ddict['image'], ddict['title'])
elif ddict['event'] == "addAllClicked":
for i in range(len(ddict["images"])):
self.addImage(ddict['images'][i], ddict['titles'][i])
elif ddict['event'] == "removeImageClicked":
self.removeImage(ddict['title'])
elif ddict['event'] == "replaceImageClicked":
self.replaceImage(ddict['image'], ddict['title'])
elif ddict['event'] == "resetSelection":
self.setStackSelectionMask(None)
#Methods implemented by the plugin
def getMethods(self):
if self.widget is None:
return [self.__methodKeys[0]]
else:
return self.__methodKeys
def getMethodToolTip(self, name):
return self.methodDict[name][1]
def getMethodPixmap(self, name):
return self.methodDict[name][2]
def applyMethod(self, name):
return self.methodDict[name][0]()
#The specific part
def calculate(self):
if self.configurationWidget is None:
stack = self.getStackDataObject()
index = stack.info.get("McaIndex", -1)
if index == len(stack.data.shape):
index = -1
stack = None
self.configurationWidget = PCAParametersDialog(None,
regions=True,
index=index)
self._status = qt.QLabel(self.configurationWidget)
self._status.setAlignment(qt.Qt.AlignHCenter)
font = qt.QFont(self._status.font())
font.setBold(True)
self._status.setFont(font)
self._status.setText("Ready")
self.configurationWidget.layout().addWidget(self._status)
self.configurationWidget.setEnabled(True)
activeCurve = self.getActiveCurve()
if activeCurve is None:
#I could get some defaults from the stack itslef
raise ValueError("Please select an active curve")
return
x, spectrum, legend, info = activeCurve
spectrumLength = max(spectrum.shape)
oldValue = self.configurationWidget.nPC.value()
self.configurationWidget.nPC.setMaximum(spectrumLength)
self.configurationWidget.nPC.setValue(min(oldValue, spectrumLength))
binningOptions = [1]
for number in [2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 17, 19]:
if (spectrumLength % number) == 0:
binningOptions.append(number)
# TODO: Should inform the configuration widget about the possibility
# to encounter non-finite data?
ddict = {'options': binningOptions,
'binning': 1,
'method': 0}
self.configurationWidget.setParameters(ddict)
y = spectrum
self.configurationWidget.setSpectrum(x, y, legend=legend, info=info)
self.configurationWidget.show()
ret = self.configurationWidget.exec()
if ret:
self._kMeansWidget = None
self._executeFunctionAndParameters()
def _executeFunctionAndParameters(self):
self.widget = None
self.configurationWidget.show()
if _logger.getEffectiveLevel() == logging.DEBUG:
self.thread = CalculationThread.CalculationThread(\
calculation_method=self.actualCalculation)
self.thread.result = self.actualCalculation()
self.threadFinished()
else:
self.thread = CalculationThread.CalculationThread(\
calculation_method=self.actualCalculation)
self.thread.finished.connect(self.threadFinished)
self.thread.start()
message = "Please wait. PCA Calculation going on."
CalculationThread.waitingMessageDialog(self.thread,
message=message,
parent=self.configurationWidget)
def actualCalculation(self):
pcaParameters = self.configurationWidget.getParameters()
self._status.setText("Calculation going on")
self.configurationWidget.setEnabled(False)
#self.configurationWidget.close()
self.__methodlabel = pcaParameters.get('methodlabel', "")
function = pcaParameters['function']
pcaParameters['ncomponents'] = pcaParameters['npc']
# At some point I should make sure I get directly the
# function and the parameters from the configuration widget
del pcaParameters['npc']
del pcaParameters['method']
del pcaParameters['function']
del pcaParameters['methodlabel']
# binning = pcaParameters['binning']
# mask = pcaParameters['mask']
regions = pcaParameters['regions']
spectral_mask = pcaParameters['spectral_mask']
#print("regions = ", regions)
#del pcaParameters['regions']
#del pcaParameters['spectral_mask']
#print("Regions and spectral mask not handled yet")
if not self.isStackFinite():
# one has to check for NaNs in the used region(s)
# for the time being only in the global image
# spatial_mask = numpy.isfinite(image_data)
spatial_mask = numpy.isfinite(self.getStackOriginalImage())
pcaParameters['mask'] = spatial_mask
pcaParameters["legacy"] = False
_logger.info("PCA function %s" % function.__name__)
_logger.info("PCA parameters %s" % pcaParameters)
if "Multiple" in self.__methodlabel:
stackList = self.getStackDataObjectList()
oldShapes = []
for stack in stackList:
oldShapes.append(stack.data.shape)
result = function(stackList, **pcaParameters)
for i in range(len(stackList)):
stackList[i].data.shape = oldShapes[i]
return result
else:
stack = self.getStackDataObject()
if isinstance(stack, numpy.ndarray):
if stack.data.dtype not in [numpy.float64, numpy.float32]:
_logger.warning("WARNING: Non floating point data")
text = "Calculation going on."
text += " WARNING: Non floating point data."
self._status.setText(text)
oldShape = stack.data.shape
result = function(stack, **pcaParameters)
if stack.data.shape != oldShape:
stack.data.shape = oldShape
return result
def threadFinished(self):
result = self.thread.getResult()
self.thread = None
if type(result) == type((1,)):
#if we receive a tuple there was an error
if len(result):
if result[0] == "Exception":
self._status.setText("Ready after calculation error")
self.configurationWidget.setEnabled(True)
raise Exception(result[1], result[2])
return
self._status.setText("Ready")
curve = self.configurationWidget.getSpectrum(binned=True)
if curve not in [None, []]:
xValues = curve[0]
else:
xValues = None
self.configurationWidget.setEnabled(True)
self.configurationWidget.close()
if hasattr(result, "keys"):
# new way
images = result["scores"]
eigenValues = result["eigenvalues"]
eigenVectors = result["eigenvectors"]
variance = result.get("variance", None)
if variance is not None:
explainedVariance = []
for value in eigenValues:
explainedVariance.append(100 * (value/variance))
else:
variance = None
images, eigenValues, eigenVectors = result
methodlabel = self.__methodlabel
imageNames = None
vectorNames = None
nimages = images.shape[0]
imageNames = []
vectorNames = []
itmp = nimages
if " ICA " in methodlabel:
itmp = int(nimages / 2)
for i in range(itmp):
imageNames.append("ICAimage %02d" % i)
vectorNames.append("ICAvector %02d" % i)
if "Multiple" in methodlabel:
xValues = None
for i in range(itmp):
imageNames.append("Eigenimage %02d" % i)
vectorNames.append("Eigenvector %02d" % i)
if variance is not None:
vectorNames[-1] = "EV%02d Explained variance %.4f %%" % \
(i, explainedVariance[i])
self.widget = StackPluginResultsWindow.StackPluginResultsWindow(\
usetab=True)
self.widget.buildAndConnectImageButtonBox(replace=True,
multiple=True)
qt = StackPluginResultsWindow.qt
self.widget.sigMaskImageWidgetSignal.connect(self.mySlot)
if xValues is not None:
xValues = [xValues] * nimages
self.widget.setStackPluginResults(images,
spectra=eigenVectors,
image_names=imageNames,
xvalues=xValues,
spectra_names=vectorNames)
self._showWidget()
def _showWidget(self):
if self.widget is None:
return
#Show
self.widget.show()
self.widget.raise_()
#update
self.selectionMaskUpdated()
def _showKMeansWidget(self):
if self._kMeansWidget is None:
self._kMeansWidget = RGBImageCalculator.RGBImageCalculator( \
math="kmeans", selection=True)
#self._kMeansWidget = MaskImageWidget.MaskImageWidget()
#labels = KMeansModule.label(view, k=int(min(nImages, 4)))
#labels.shape = nRows, nColumns
self._kMeansWidget.graphWidget.sigMaskImageWidgetSignal.connect( \
self.mySlot)
# self._kMeansWidget.setImageData(labels)
imageDict = {}
for i in range(len(self.widget.imageList)):
imageDict[self.widget.imageNames[i]] = \
{"image":self.widget.imageList[i]}
self._kMeansWidget.imageList = list(imageDict.keys())
self._kMeansWidget.imageDict = imageDict
#Show
self._kMeansWidget.show()
self._kMeansWidget.raise_()
#update
self.selectionMaskUpdated()
MENU_TEXT = "PyMca PCA"
def getStackPluginInstance(stackWindow, **kw):
ob = PCAStackPlugin(stackWindow)
return ob
|