1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
#/*##########################################################################
# Copyright (C) 2004-2021 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import numpy
import sys
import logging
from PyMca5 import Plugin1DBase
from PyMca5.PyMcaGui import PyMcaQt as qt
from PyMca5.PyMcaGui import MaskImageWidget
_logger = logging.getLogger(__name__)
class RegularMeshPlugins(Plugin1DBase.Plugin1DBase):
def __init__(self, plotWindow, **kw):
Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw)
self.methodDict = {}
self.methodDict['Show Image'] = [self._convert,
"Show mesh as image",
None]
self.imageWidget = None
#Methods to be implemented by the plugin
def getMethods(self, plottype=None):
"""
A list with the NAMES associated to the callable methods
that are applicable to the specified plot.
Plot type can be "SCAN", "MCA", None, ...
"""
names = list(self.methodDict.keys())
names.sort()
return names
def getMethodToolTip(self, name):
"""
Returns the help associated to the particular method name or None.
"""
return self.methodDict[name][1]
def getMethodPixmap(self, name):
"""
Returns the pixmap associated to the particular method name or None.
"""
return self.methodDict[name][2]
def applyMethod(self, name):
"""
The plugin is asked to apply the method associated to name.
"""
try:
self.methodDict[name][0]()
except:
_logger.error(sys.exc_info())
raise
def _convert(self):
x, y, legend, info = self.getActiveCurve()
self._x = x[:]
self._y = y[:]
if 'Header' in info:
# SPEC
command = info['Header'][0]
elif "title" in info:
command = info["title"]
else:
raise ValueError("Active curve does not seem to be a mesh scan")
if "mesh" not in command:
raise ValueError("Active curve does not seem to be a mesh scan")
idx = command.index("mesh")
item = command[idx:].split()
xLabel = self.getGraphXLabel()
yLabel = self.getGraphYLabel()
m0idx = 1
m1idx = 5
self._motor0Mne = item[m0idx]
self._motor1Mne = item[m1idx]
_logger.info("Scanned motors are %s and %s" % (self._motor0Mne, self._motor1Mne))
#print("MOTOR 0 ", float(item[m0idx + 1]),
# float(item[m0idx + 2]),
# int(item[m0idx + 3]))
#print("MOTOR 1 ", float(item[m1idx + 1]),
# float(item[m1idx + 2]),
# int(item[m1idx + 3]))
_logger.info("Assuming scans written in terms of number of intervals")
plusOne = 1
#Assume an EXACTLY regular mesh for both motors
self._motor0 = numpy.linspace(float(item[m0idx + 1]),
float(item[m0idx + 2]),
int(item[m0idx + 3]) + plusOne)
self._motor1 = numpy.linspace(float(item[m1idx + 1]),
float(item[m1idx + 2]),
int(item[m1idx + 3]) + plusOne)
#Didier's contribution: Try to do something if scan has been interrupted
if y.size < (int(item[m0idx + 3])+plusOne) * (int(item[m1idx + 3])+plusOne):
_logger.warning("WARNING: Incomplete mesh scan")
self._motor1 = numpy.resize(self._motor1,
(y.size // (int(item[m0idx + 3])+plusOne),))
y = numpy.resize(y,((y.size // (int(item[m0idx + 3])+plusOne) * \
(int(item[m0idx + 3])+plusOne)),1))
try:
if xLabel.upper() == motor0Mne.upper():
self._motor0 = self._x
self._motor0Mne = self._xLabel
elif xLabel.upper() == motor1Mne.upper():
self._motor1 = self._x
self._motor1Mne = self._xLabel
elif xLabel == info['selection']['cntlist'][0]:
self._motor0 = self._x
self._motor0Mne = self._xLabel
elif xLabel == info['selection']['cntlist'][1]:
self._motor1 = self._x
self._motor1Mne = self._xLabel
except:
_logger.debug("XLabel should be one of the scanned motors")
if "dmesh" in command:
# relative positions, we have to provide an offset
# the offset should be in the positioners if present
offsets = []
if ["MotorNames" in info] and ["MotorValues" in info]:
for key in [self._motor0Mne, self._motor1Mne]:
if key in info["MotorNames"]:
idx = info["MotorNames"].index(key)
offsets.append(info["MotorValues"][idx])
if len(offsets) == 2:
self._motor0 += offsets[0]
self._motor1 += offsets[1]
else:
_logger.warning("Using relative positions")
self._legend = legend
self._info = info
yView = y[:]
yView.shape = len(self._motor1), len(self._motor0)
if self.imageWidget is None:
self.imageWidget = MaskImageWidget.MaskImageWidget(\
imageicons=False,
selection=False,
profileselection=True,
aspect=True,
scanwindow=self)
deltaX = self._motor0[1] - self._motor0[0]
deltaY = self._motor1[1] - self._motor1[0]
self.imageWidget.setImageData(yView,
xScale=(self._motor0[0],
deltaX),
yScale=(self._motor1[0],
deltaY))
self.imageWidget.setXLabel(self._motor0Mne)
self.imageWidget.setYLabel(self._motor1Mne)
self.imageWidget.show()
MENU_TEXT = "RegularMeshPlugins"
def getPlugin1DInstance(plotWindow, **kw):
ob = RegularMeshPlugins(plotWindow)
return ob
if __name__ == "__main__":
from PyMca5.PyMcaGraph import Plot
app = qt.QApplication([])
_logger.setLevel(logging.DEBUG)
x = numpy.arange(100.)
y = x * x
plot = Plot.Plot()
plot.addCurve(x, y, "dummy")
plot.addCurve(x+100, -x*x)
plugin = getPlugin1DInstance(plot)
for method in plugin.getMethods():
print(method, ":", plugin.getMethodToolTip(method))
plugin.applyMethod(plugin.getMethods()[0])
curves = plugin.getAllCurves()
for curve in curves:
print(curve[2])
print("LIMITS = ", plugin.getGraphYLimits())
|