1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
#/*##########################################################################
# Copyright (C) 2004-2020 V.A. Sole, European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
"""This plugin provides normalisation methods.
Two methods can be applied to normalize the stack based on the
active curve (I0):
- I/I0 Normalization: divide all spectra by the active curve
- -log(I/I0) Normalization
- -log10(I) Particular case not needing an active curve, for FTIR for instance
- -log10(I/100) Same as above for data expressed in percentage.
Three methods are provided to normalize the stack images based on
an external image (I0) read from a file:
- Image I/I0 Normalization
- Image I * (max(I0)/I0) Scaling
- Image -log(I/I0) Normalization
External images can be read from following file formats:
- EDF
- HDF5
- ASCII
If a multiframe EDF file is opened, the first frame is used. In case
a HDF5 file is selected, a browser is used to select a 2D dataset.
"""
__author__ = "V.A. Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import numpy
import logging
from PyMca5 import StackPluginBase
# Add support for normalization by data
from PyMca5.PyMcaGui.io import PyMcaFileDialogs
from PyMca5.PyMca import EdfFile
from PyMca5.PyMca import specfilewrapper
from PyMca5.PyMca import HDF5Widget
try:
import h5py
HDF5 = True
except:
HDF5 = False
_logger = logging.getLogger(__name__)
class StackNormalizationPlugin(StackPluginBase.StackPluginBase):
def __init__(self, stackWindow, **kw):
if _logger.getEffectiveLevel() == logging.DEBUG:
StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG)
StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw)
self.methodDict = {}
text = "Stack/I0 where I0 is the active curve\n"
function = self.divideByCurve
info = text
icon = None
self.methodDict["I/I0 Normalization"] =[function,
info,
icon]
text = "-log(Stack/I0) Normalization where I0 is the active curve\n"
function = self.logNormalizeByCurve
info = text
icon = None
self.methodDict["-log(I/I0) Normalization"] =[function,
info,
icon]
text = "-log10(Stack) Convert from transmission to absorption\n"
function = self.logNormalizeByOne
info = text
icon = None
self.methodDict["-log10(I) Normalization"] =[function,
info,
icon]
text = "-log10(Stack) Convert from percentual transmission to absorption\n"
function = self.logNormalizeByHundred
info = text
icon = None
self.methodDict["-log10(I/100) Normalization"] =[function,
info,
icon]
text = "External Image I/I0 Normalization where\n"
text += "I0 is an image read from file\n"
function = self.divideByExternalImage
info = text
icon = None
self.methodDict["Image I/I0 Normalization"] =[function,
info,
icon]
text = "External Image (I/I0) * max(I0) Normalization where\n"
text += "I0 is an image read from file\n"
function = self.scaleByExternalImage
info = text
icon = None
self.methodDict["Image I * (max(I0)/I0) Scaling"] =[function,
info,
icon]
text = "External Image -log(Stack/I0) Normalization\n"
text += "where I0 is an image read from file\n"
function = self.logNormalizeByExternalImage
info = text
icon = None
self.methodDict["Image -log(I/I0) Normalization"] =[function,
info,
icon]
self.__methodKeys = ["I/I0 Normalization",
"-log(I/I0) Normalization",
"-log10(I) Normalization",
"-log10(I/100) Normalization",
"Image I/I0 Normalization",
"Image I * (max(I0)/I0) Scaling",
"Image -log(I/I0) Normalization"]
#Methods implemented by the plugin
def getMethods(self):
return self.__methodKeys
def getMethodToolTip(self, name):
return self.methodDict[name][1]
def getMethodPixmap(self, name):
return self.methodDict[name][2]
def applyMethod(self, name):
return self.methodDict[name][0]()
def _loadExternalData(self):
getfilter = True
fileTypeList = ["EDF Files (*edf *ccd *tif)"]
if HDF5:
fileTypeList.append('HDF5 Files (*.h5 *.nxs *.hdf *.hdf5)')
fileTypeList.append('ASCII Files (*)')
fileTypeList.append("EDF Files (*)")
message = "Open data file"
filenamelist, ffilter = PyMcaFileDialogs.getFileList(parent=None,
filetypelist=fileTypeList,
message=message,
getfilter=getfilter,
single=True,
currentfilter=None)
if len(filenamelist) < 1:
return
filename = filenamelist[0]
if ffilter.startswith('HDF5'):
data = HDF5Widget.getDatasetValueDialog(
filename=filename,
message='Select your data set by a double click')
elif ffilter.startswith("EDF"):
edf = EdfFile.EdfFile(filename, "rb")
if edf.GetNumImages() > 1:
# TODO: A dialog showing the different images
# based on the external images browser needed
_logger.warning("WARNING: Taking first image")
data = edf.GetData(0)
edf = None
elif ffilter.startswith("ASCII"):
#data=numpy.loadtxt(filename)
sf = specfilewrapper.Specfile(filename)
targetScan = sf[0]
data = numpy.array(targetScan.data().T, copy=True)
targetScan = None
sf = None
return data
def scaleByExternalImage(self):
self._externalImageOperation("scale")
def divideByExternalImage(self):
self._externalImageOperation("divide")
def logNormalizeByExternalImage(self):
self._externalImageOperation("log")
def _externalImageOperation(self, operation="divide"):
if operation == "log":
operator = numpy.log
stack = self.getStackDataObject()
if stack is None:
return
if not isinstance(stack.data, numpy.ndarray):
text = "This method does not work with dynamically loaded stacks yet"
raise TypeError(text)
normalizationData = self._loadExternalData()
if normalizationData is None:
return
mcaIndex = stack.info.get('McaIndex', -1)
stackShape = stack.data.shape
if mcaIndex < 0:
mcaIndex = len(stackShape) - mcaIndex
imageSize = stack.data.size / stackShape[mcaIndex]
if normalizationData.size != imageSize:
if normalizationData.shape[0] == imageSize:
if len(normalizationData.shape) == 2:
# assume the last column are the normalization data
normalizationData = normalizationData[:, -1]
if normalizationData.size != imageSize:
raise ValueError("Loaded data size does not match required size")
if normalizationData.dtype not in [numpy.float32,
numpy.float64]:
normalizationData = normalizationData.astype(numpy.float32)
if operation == "scale":
normalizationData /= normalizationData.max()
# TODO: Use an intermediate array and set divisions 0/0 to 0.
if stack.data.dtype in [numpy.int32, numpy.uint32]:
view = stack.data.view(numpy.float32)
elif stack.data.dtype in [numpy.int64, numpy.uint64]:
view = stack.data.view(numpy.float64)
else:
view = stack.data
if mcaIndex == 0:
normalizationData.shape = stackShape[1:]
if operation in ["divide", "scale"]:
for i in range(stackShape[mcaIndex]):
view[i] = stack.data[i] / normalizationData
elif operation == "log":
for i in range(stackShape[mcaIndex]):
view[i] = -operator(stack.data[i]/normalizationData)
elif mcaIndex == 2:
normalizationData.shape = stackShape[:2]
if operation in ["divide", "scale"]:
for i in range(stackShape[mcaIndex]):
view[:, :, i] = stack.data[:, :, i] / normalizationData
else:
for i in range(stackShape[mcaIndex]):
view[:, :, i] = -operator(stack.data[:, :, i]/ \
normalizationData)
elif mcaIndex == 1:
normalizationData.shape = stackShape[0], stackShape[2]
if operation in ["divide", "scale"]:
for i in range(stackShape[mcaIndex]):
view[:, i, :] = stack.data[:, i, :] / normalizationData
else:
for i in range(stackShape[mcaIndex]):
view[:, i, :] = -operator(stack.data[:, i, :]/ \
normalizationData)
else:
raise ValueError("Unsupported 1D index %d" % mcaIndex)
self.setStack(view)
def divideByExternalCurve(self):
stack = self.getStackDataObject()
if stack is None:
return
if not isinstance(stack.data, numpy.ndarray):
text = "This method does not work with dynamically loaded stacks yet"
raise TypeError(text)
def divideByCurve(self):
stack = self.getStackDataObject()
if not isinstance(stack.data, numpy.ndarray):
text = "This method does not work with dynamically loaded stacks"
raise TypeError(text)
curve = self.getActiveCurve()
if curve is None:
text = "Please make sure to have an active curve"
raise TypeError(text)
x, y, legend, info = self.getActiveCurve()
yWork = y[y!=0].astype(numpy.float64)
mcaIndex = stack.info.get('McaIndex', -1)
if mcaIndex in [-1, 2]:
for i, value in enumerate(yWork):
stack.data[:, :, i] = stack.data[:,:,i]/value
elif mcaIndex == 0:
for i, value in enumerate(yWork):
stack.data[i, :, :] = stack.data[i,:,:]/value
elif mcaIndex == 1:
for i, value in enumerate(yWork):
stack.data[:, i, :] = stack.data[:,i,:]/value
else:
raise ValueError("Invalid 1D index %d" % mcaIndex)
self.setStack(stack)
def logNormalizeByOne(self):
return self.logNormalizeByCurve(divider=1.0)
def logNormalizeByHundred(self):
return self.logNormalizeByCurve(divider=100.)
def logNormalizeByCurve(self, divider=None):
stack = self.getStackDataObject()
if not isinstance(stack.data, numpy.ndarray):
text = "This method does not work with dynamically loaded stacks"
raise TypeError(text)
if divider is None:
curve = self.getActiveCurve()
if curve is None:
text = "Please make sure to have an active curve"
raise TypeError(text)
x, y, legend, info = self.getActiveCurve()
if divider is None:
yWork = y[y>0].astype(numpy.float64)
mcaIndex = stack.info.get('McaIndex', -1)
if mcaIndex in [-1, 2]:
for i, value in enumerate(yWork):
stack.data[:, :, i] = -numpy.log(stack.data[:,:,i] / value)
elif mcaIndex == 0:
for i, value in enumerate(yWork):
stack.data[i, :, :] = -numpy.log(stack.data[i,:,:] / value)
elif mcaIndex == 1:
for i, value in enumerate(yWork):
stack.data[:, i, :] = -numpy.log(stack.data[:,i,:] / value)
else:
raise ValueError("Invalid 1D index %d" % mcaIndex)
else:
# this loop is to try to avoid avoid huge temporary arrays
if stack.data.shape[0] > 1:
for i in range(stack.data.shape[0]):
stack.data[i] = -numpy.log10(stack.data[i] / divider)
else:
stack.data[:] = -numpy.log10(stack.data[:] / divider)
self.setStack(stack)
MENU_TEXT = "Stack Normalization"
def getStackPluginInstance(stackWindow, **kw):
ob = StackNormalizationPlugin(stackWindow)
return ob
|