File: PCAToolsTest.py

package info (click to toggle)
pymca 5.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 44,392 kB
  • sloc: python: 155,456; ansic: 15,843; makefile: 116; sh: 73; xml: 55
file content (206 lines) | stat: -rw-r--r-- 9,228 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#/*##########################################################################
#
# The PyMca X-Ray Fluorescence Toolkit
#
# Copyright (c) 2004-2019 European Synchrotron Radiation Facility
#
# This file is part of the PyMca X-ray Fluorescence Toolkit developed at
# the ESRF by the Software group.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V. Armando Sole - ESRF Data Analysis"
__contact__ = "sole@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import unittest
import numpy
import numpy.linalg
try:
    import mdp
    MDP = True
except:
    # MDP can give very weird errors
    MDP = False

class testPCATools(unittest.TestCase):
    def testPCAToolsImport(self):
        from PyMca5.PyMcaMath.mva import PCATools

    def testPCAToolsCovariance(self):
        from PyMca5.PyMcaMath.mva.PCATools import getCovarianceMatrix
        x = numpy.array([[0.0,  2.0,  3.0],
                         [3.0,  0.0, -1.0],
                         [4.0, -4.0,  4.0],
                         [4.0,  4.0,  4.0]])
        nSpectra = x.shape[0]

        # test just multiplication
        tmpArray = numpy.dot(x.T, x)
        for force in [True, False]:
            pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x,
                                                            force=force,
                                                            center=False)
            self.assertTrue(numpy.allclose(tmpArray, pymcaCov * (nData - 1)))

        # calculate covariance using numpy
        numpyCov = numpy.cov(x.T)
        numpyAvg = x.sum(axis=0).reshape(-1, 1) / nSpectra
        tmpArray = x.T - numpyAvg
        numpyCov2 = numpy.dot(tmpArray, tmpArray.T) / nSpectra
        numpyAvg = numpyAvg.reshape(1, -1)

        # calculate covariance using PCATools and 2D stack
        # directly and dynamically loading data
        for force in [False, True]:
            pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x,
                                                            force=force,
                                                            center=True)

            self.assertTrue(numpy.allclose(numpyCov, pymcaCov))
            self.assertTrue(numpy.allclose(numpyAvg, pymcaAvg))
            self.assertTrue(nData == nSpectra)

        # calculate covariance using PCATools and 3D stack
        # directly and dynamically loading data
        x.shape = 2, 2, -1
        for force in [False, True]:
            pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x,
                                                            force=force,
                                                            center=True)

            self.assertTrue(numpy.allclose(numpyCov, pymcaCov))
            self.assertTrue(numpy.allclose(numpyAvg, pymcaAvg))
            self.assertTrue(nData == nSpectra)

    def testPCAToolsPCA(self):
        from PyMca5.PyMcaMath.mva.PCATools import numpyPCA
        x = numpy.array([[0.0,  2.0,  3.0],
                         [3.0,  0.0, -1.0],
                         [4.0, -4.0,  4.0],
                         [4.0,  4.0,  4.0]])

        # that corresponds to 4 spectra of 3 channels
        nSpectra = x.shape[0]

        # calculate eigenvalues and eigenvectors with numpy
        tmpArray = numpy.dot(x.T, x)/(nSpectra - 1)
        numpyEigenvalues, numpyEigenvectors = numpy.linalg.eigh(tmpArray)

        # sort from higher to lower
        idx = list(range(numpyEigenvalues.shape[0]-1, -1 , -1))
        numpyEigenvalues = numpy.take(numpyEigenvalues, idx)
        numpyEigenvectors = numpyEigenvectors[:, ::-1].T

        # now use PyMca
        # centering has to be false to obtain the same results
        ncomp = x.shape[1]
        for force in [True, False]:
            images, eigenvalues, eigenvectors = numpyPCA(x,
                                                         ncomponents=ncomp,
                                                         force=force,
                                                         center=False,
                                                         scale=False)
            self.assertTrue(numpy.allclose(eigenvalues, numpyEigenvalues))
            for i in range(ncomp):
                if (eigenvectors[i,0] >= 0 and numpyEigenvectors[i,0] >=0) or\
                   (eigenvectors[i,0] <= 0 and numpyEigenvectors[i,0] <=0):
                    # both same sign
                    self.assertTrue(numpy.allclose(eigenvectors[i],
                                                   numpyEigenvectors[i]))
                else:
                    self.assertTrue(numpy.allclose(-eigenvectors[i],
                                                   numpyEigenvectors[i]))

        # test with a different shape
        x.shape = 2, 2, -1
        ncomp = 3
        for force in [True, False]:
            images, eigenvalues, eigenvectors = numpyPCA(x,
                                                         ncomponents=ncomp,
                                                         force=force,
                                                         center=False,
                                                         scale=False)
            self.assertTrue(numpy.allclose(eigenvalues, numpyEigenvalues))
            for i in range(ncomp):
                if (eigenvectors[i,0] >= 0 and numpyEigenvectors[i,0] >=0) or\
                   (eigenvectors[i,0] <= 0 and numpyEigenvectors[i,0] <=0):
                    # both same sign
                    self.assertTrue(numpy.allclose(eigenvectors[i],
                                                   numpyEigenvectors[i]))
                else:
                    self.assertTrue(numpy.allclose(-eigenvectors[i],
                                                   numpyEigenvectors[i]))

    if MDP:
        def testPCAToolsMDP(self):
            from PyMca5.PyMcaMath.mva.PCATools import getCovarianceMatrix, numpyPCA
            x = numpy.array([[0.0,  2.0,  3.0],
                             [3.0,  0.0, -1.0],
                             [4.0, -4.0,  4.0],
                             [4.0,  4.0,  4.0]])

            # use mdp
            pcaNode = mdp.nodes.PCANode()
            pcaNode.train(x)
            pcaNode.stop_training()
            pcaEigenvectors = pcaNode.v.T

            # and compare with PyMca
            ncomp = x.shape[1]
            for force in [True, False]:
                images, eigenvalues, eigenvectors = numpyPCA(x,
                                                        ncomponents=ncomp,
                                                        force=force,
                                                        center=True,
                                                        scale=False)

                # the eigenvalues must be the same
                self.assertTrue(numpy.allclose(eigenvalues, pcaNode.d))
                # the eigenvectors can be multiplied by -1
                for i in range(ncomp):
                    if (eigenvectors[i,0] >= 0 and pcaEigenvectors[i,0] >=0) or\
                       (eigenvectors[i,0] <= 0 and pcaEigenvectors[i,0] <=0):
                        # both same sign
                        self.assertTrue(numpy.allclose(eigenvectors[i],
                                                       pcaEigenvectors[i]))
                    else:
                        self.assertTrue(numpy.allclose(-eigenvectors[i],
                                                       pcaEigenvectors[i]))

def getSuite(auto=True):
    testSuite = unittest.TestSuite()
    if auto:
        testSuite.addTest(\
            unittest.TestLoader().loadTestsFromTestCase(testPCATools))
    else:
        # use a predefined order
        testSuite.addTest(testPCATools("testPCAToolsImport"))
        testSuite.addTest(testPCATools("testPCAToolsCovariance"))
        testSuite.addTest(testPCATools("testPCAToolsPCA"))
        if MDP:
            testSuite.addTest(testPCATools("testPCAToolsMDP"))
    return testSuite

def test(auto=False):
    unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto))

if __name__ == '__main__':
    test()