File: tnt_array2d.h

package info (click to toggle)
pymol 2.5.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 42,288 kB
  • sloc: cpp: 476,472; python: 76,538; ansic: 29,510; javascript: 6,792; sh: 47; makefile: 24
file content (451 lines) | stat: -rw-r--r-- 8,897 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/*
*
* Template Numerical Toolkit (TNT)
*
* Mathematical and Computational Sciences Division
* National Institute of Technology,
* Gaithersburg, MD USA
*
*
* This software was developed at the National Institute of Standards and
* Technology (NIST) by employees of the Federal Government in the course
* of their official duties. Pursuant to title 17 Section 105 of the
* United States Code, this software is not subject to copyright protection
* and is in the public domain. NIST assumes no responsibility whatsoever for
* its use by other parties, and makes no guarantees, expressed or implied,
* about its quality, reliability, or any other characteristic.
*
*/



#ifndef TNT_ARRAY2D_H
#define TNT_ARRAY2D_H

#include <cstdlib>
#include <iostream>
#ifdef TNT_BOUNDS_CHECK
#include <assert.h>
#endif

#include "tnt_array1d.h"

namespace TNT
{


/**
	Ttwo-dimensional numerical array which
	looks like a conventional C multiarray. 
	Storage corresponds to C (row-major) ordering.
	Elements are accessed via A[i][j] notation for 0-based indexing,
	and A(i,j) for 1-based indexing.. 
	
	<p>
	Array assignment is by reference (i.e. shallow assignment).
	That is, B=A implies that the A and B point to the
	same array, so modifications to the elements of A
	will be reflected in B. If an independent copy
	is required, then B = A.copy() can be used.  Note
	that this facilitates returning arrays from functions
	without relying on compiler optimizations to eliminate
	extensive data copying.

	<p>
	The indexing and layout of this array object makes
	it compatible with C and C++ algorithms that utilize
	the familiar C[i][j] notation.  This includes numerous

	textbooks, such as Numercial Recipes, and various
	public domain codes.

*/
template <class T>
class Array2D 
{


  private:



  	Array1D<T> data_;
	Array1D<T*> v_;
	int m_;
    int n_;

  public:



/**
  Used to determined the data type of array entries.  This is most
  commonly used when requiring scalar temporaries in templated algorithms
  that have TNT arrays as input.  For example,
  <pre>
  template &lt class ArrayTwoD &gt
  void foo(ArrayTwoD &A)
  {
    A::value_type first_entry = A[0][0];
    ...
  }
  </pre>
*/
    typedef         T   value_type;

/**
  Create a null array.  This is <b>not</b> the same
  as Array2D(0,0), which consumes some memory overhead.
*/

	       Array2D();


/**
	Create a new (m x n) array, without initalizing elements.  (This
	encurs an O(1) operation cost, rather than a O(m*n) cost.)

  @param m the first (row) dimension of the new matrix.
  @param n the second (column) dimension of the new matrix.
*/
	       Array2D(int m, int n);


/**
  Create a new (m x n) array,  as a view of an existing one-dimensional
  array stored in row-major order, i.e. right-most dimension varying fastest.
  Note that the storage for this pre-existing array will
  never be destroyed by TNT.

  @param m the first (row) dimension of the new matrix.
  @param n the second (column) dimension of the new matrix.
  @param a the one dimensional C array to use as data storage for
    the array.
*/
	       Array2D(int m, int n,  T *a);



/**
  Create a new (m x n) array,  initializing array elements to
  constant specified by argument.  Most often used to
  create an array of zeros, as in A(m, n, 0.0).

  @param m the first (row) dimension of the new matrix.
  @param n the second (column) dimension of the new matrix.
  @param val the constant value to set all elements of the new array to.
*/

	       Array2D(int m, int n, const T &val);


/**
  Copy constructor. Array data is NOT copied, but shared.
  Thus, in Array2D B(A), subsequent changes to A will
  be reflected in B.  For an indepent copy of A, use
  Array2D B(A.copy()), or B = A.copy(), instead.
*/
    inline Array2D(const Array2D &A);


/**
	Convert 2D array into a regular multidimensional C pointer.  Most often
	called automatically when calling C interfaces that expect things like
	double** rather than Array2D<dobule>.
	
*/
	inline operator T**();

/**
	Convert a const 2D array into a const multidimensional C pointer.  
	Most often called automatically when calling C interfaces that expect 
	things like "const double**" rather than "const Array2D<dobule>&".
	
*/

	inline operator const T**() const;


/**
	Assign all elements of array the same value.

	@param val the value to assign each element.
*/
	inline Array2D & operator=(const T &val);


/**
	Assign one Array2D to another.  (This is a shallow-assignement operation,
	and it is the identical semantics to ref(A).

	@param A the array to assign this one to.
*/
	inline Array2D & operator=(const Array2D &A);


	inline Array2D & ref(const Array2D &A);
	       Array2D copy() const;
		   Array2D & inject(const Array2D & A);
	inline T* operator[](int i);
	inline const T* operator[](int i) const;
	inline int dim1() const;
	inline int dim2() const;
     ~Array2D();

	/* extended interface (not part of the standard) */


	inline int ref_count();
	inline int ref_count_data();
	inline int ref_count_dim1();
	Array2D subarray(int i0, int i1, int j0, int j1);

};


/**
  Create a new (m x n) array, WIHOUT initializing array elements.
  To create an initialized array of constants, see Array2D(m,n,value).

  <p>
  This version avoids the O(m*n) initialization overhead and
  is used just before manual assignment.

  @param m the first (row) dimension of the new matrix.
  @param n the second (column) dimension of the new matrix.
*/
template <class T>
Array2D<T>::Array2D() : data_(), v_(), m_(0), n_(0) {} 


template <class T>
Array2D<T>::Array2D(const Array2D<T> &A) : data_(A.data_), v_(A.v_), 
	m_(A.m_), n_(A.n_) {}




template <class T>
Array2D<T>::Array2D(int m, int n) : data_(m*n), v_(m), m_(m), n_(n)
{
	if (m>0 && n>0)
	{
		T* p = &(data_[0]);
		for (int i=0; i<m; i++)
		{
			v_[i] = p;
			p += n;
		}
	}
}



template <class T>
Array2D<T>::Array2D(int m, int n, const T &val) : data_(m*n), v_(m), 
													m_(m), n_(n) 
{
  if (m>0 && n>0)
  {
	data_ = val;
	T* p  = &(data_[0]);
	for (int i=0; i<m; i++)
	{
			v_[i] = p;
			p += n;
	}
  }
}

template <class T>
Array2D<T>::Array2D(int m, int n, T *a) : data_(m*n, a), v_(m), m_(m), n_(n)
{
  if (m>0 && n>0)
  {
	T* p = &(data_[0]);
	
	for (int i=0; i<m; i++)
	{
			v_[i] = p;
			p += n;
	}
  }
}


template <class T>
inline T* Array2D<T>::operator[](int i) 
{ 
#ifdef TNT_BOUNDS_CHECK
	assert(i >= 0);
	assert(i < m_);
#endif

return v_[i]; 

}


template <class T>
inline const T* Array2D<T>::operator[](int i) const
{ 
#ifdef TNT_BOUNDS_CHECK
	assert(i >= 0);
	assert(i < m_);
#endif

return v_[i]; 

}

template <class T>
Array2D<T> & Array2D<T>::operator=(const T &a)
{
	/* non-optimzied, but will work with subarrays in future verions */

	for (int i=0; i<m_; i++)
		for (int j=0; j<n_; j++)
		v_[i][j] = a;
	return *this;
}




template <class T>
Array2D<T> Array2D<T>::copy() const
{
	Array2D A(m_, n_);

	for (int i=0; i<m_; i++)
		for (int j=0; j<n_; j++)
			A[i][j] = v_[i][j];


	return A;
}


template <class T>
Array2D<T> & Array2D<T>::inject(const Array2D &A)
{
	if (A.m_ == m_ &&  A.n_ == n_)
	{
		for (int i=0; i<m_; i++)
			for (int j=0; j<n_; j++)
				v_[i][j] = A[i][j];
	}
	return *this;
}




template <class T>
Array2D<T> & Array2D<T>::ref(const Array2D<T> &A)
{
	if (this != &A)
	{
		v_ = A.v_;
		data_ = A.data_;
		m_ = A.m_;
		n_ = A.n_;
		
	}
	return *this;
}



template <class T>
Array2D<T> & Array2D<T>::operator=(const Array2D<T> &A)
{
	return ref(A);
}

template <class T>
inline int Array2D<T>::dim1() const { return m_; }

template <class T>
inline int Array2D<T>::dim2() const { return n_; }


template <class T>
Array2D<T>::~Array2D() {}




template <class T>
inline Array2D<T>::operator T**()
{
	return &(v_[0]);
}
template <class T>
inline Array2D<T>::operator const T**() const
{
	return static_cast<const T**>(&(v_[0]));
}

/* ............... extended interface ............... */
/**
	Create a new view to a subarray defined by the boundaries
	[i0][i0] and [i1][j1].  The size of the subarray is
	(i1-i0) by (j1-j0).  If either of these lengths are zero
	or negative, the subarray view is null.

*/
template <class T>
Array2D<T> Array2D<T>::subarray(int i0, int i1, int j0, int j1) 
{
	Array2D<T> A;
	int m = i1-i0+1;
	int n = j1-j0+1;

	/* if either length is zero or negative, this is an invalide
		subarray. return a null view.
	*/
	if (m<1 || n<1)
		return A;

	A.data_ = data_;
	A.m_ = m;
	A.n_ = n;
	A.v_ = Array1D<T*>(m);
	T* p = &(data_[0]) + i0 *  n_ + j0;
	for (int i=0; i<m; i++)
	{
		A.v_[i] = p + i*n_;

	}	
	return A;
}

template <class T>
inline int Array2D<T>::ref_count()
{
	return ref_count_data();
}



template <class T>
inline int Array2D<T>::ref_count_data()
{
	return data_.ref_count();
}

template <class T>
inline int Array2D<T>::ref_count_dim1()
{
	return v_.ref_count();
}




} /* namespace TNT */

#endif
/* TNT_ARRAY2D_H */