File: tnt_sparse_matrix.h

package info (click to toggle)
pymol 2.5.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 42,288 kB
  • sloc: cpp: 476,472; python: 76,538; ansic: 29,510; javascript: 6,792; sh: 47; makefile: 24
file content (281 lines) | stat: -rw-r--r-- 6,085 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#ifndef TNT_SPARSE_MATRIX_H
#define TNT_SPARSE_MATRIX_H

/*
*
* Template Numerical Toolkit (TNT)
*
* Mathematical and Computational Sciences Division
* National Institute of Technology,
* Gaithersburg, MD USA
*
*
* This software was developed at the National Institute of Standards and
* Technology (NIST) by employees of the Federal Government in the course
* of their official duties. Pursuant to title 17 Section 105 of the
* United States Code, this software is not subject to copyright protection
* and is in the public domain. NIST assumes no responsibility whatsoever for
* its use by other parties, and makes no guarantees, expressed or implied,
* about its quality, reliability, or any other characteristic.
*
*/



#include <vector>
#include "tnt_vector.h"
#include "tnt_sparse_vector.h"

namespace TNT
{

//namespace Linear_Algebra
//{


#if 0
template <class T, class Integer>
class Sparse_Matrix_Coordinate_Element
{
		private:

				T val_;
				Integer row_index_;
				Integer col_index_;

		public:

				Sparse_Matrix_Coordinate_Element(
						const T& a, const Integer &i, const Integer &j) : 
						val_(a), row_index_(i), col_index(i) {}
				

				const T& value() const { return val_; } 
				Integer	row_index() const { return row_index_; } 
				Integer	col_index() const { return col_index_; } 

				T& value() { return val_; }
				Integer& row_index() { return row_index_; }
				Integer& col_index() { return col_index_; }

};
#endif

/**
	Read-only view of a sparse matrix in compressed-row storage
	format.  Neither array elements (nonzeros) nor sparsity
	structure can be modified.  If modifications are required,
	create a new view.

	<p>
	Index values begin at 0.

	<p>
	<b>Storage requirements:</b> An (m x n) matrix with
	nz nonzeros requires no more than  ((T+2I)*nz)
	bytes, where T is the size of data elements and
	I is the size of integer subscripts.
	

*/
template <class T>
class Sparse_Matrix
{
  private:

		// compressed row storage M rows of <value, col_index> pairs
		//
		std::vector< Sparse_Vector<T> > S_;    

  	int num_rows_;        // number of rows
  	int num_cols_;        // number of cols
		int num_nonzeros_; 		// number of nonzeros

													// Used only in multi-step constructions.  This
													// allows one to build a sparse matrix with 
													// multiple calls to insert().
													//
		int internal_state_;	// 0 if closed (no more inserts) , 1 if open;



public:


	Sparse_Matrix(Subscript M, Subscript N):
								S_(M),  
								num_rows_(M), num_cols_(N), num_nonzeros_(0),
								internal_state_(1) {};

			

	Sparse_Matrix(Subscript M, Subscript N, Subscript nz, const T* val,
				const Subscript *r, const Subscript *c):
					S_(M),
					num_rows_(M), 
					num_cols_(N), 
					num_nonzeros_(0),
					internal_state_(1)
					{

						insert(nz, val, r, c);	
						close();
					};
   

	int is_closed() { return internal_state_; }

	void   insert(const T& val, Subscript i, Subscript j)
	{
		  if (internal_state_ == 0) return;


			S_[i].insert(val, j);
			num_nonzeros_++;
	}

	void   insert(Subscript nz, const T*  val, const Subscript *i, 
					const Subscript *j)
	{
		  if (internal_state_ == 0) return;

			for (int count=0; count<nz; count++)
			{
				insert(val[count], i[count], j[count]);	
			}
	}

	void   insert_base_one(const T& val, Subscript i, Subscript j)
	{
			insert_one_base(val, i-1, j-1);
	}

	void   insert_base_one(Subscript nz, const T*  val, const Subscript *i, 
					const Subscript *j)
	{
			for (int count=0; count<nz; count++)
			{
				insert(val[count], i[count]-1, j[count]-1);	
			}
	}

	
	void 		close()
	{
			/* 
					After this, there are no more inserts. Now one could optimize 
			   storage layout.
				 
			*/

			internal_state_ = 0;
	}

  inline   int    num_rows() const {return num_rows_;}
  inline   int    num_cols() const {return num_cols_;}
  inline   int    num_columns() const {return num_cols_;}
  int          num_nonzeros() const {return num_nonzeros_;}


	Vector<T> diag() const
	{
		int minMN = num_rows() < num_columns() ? num_rows() : num_columns();  
		Vector<T> diag_(minMN, T(0));

		for (int i=0; i<minMN; i++)
		{
			for (typename Sparse_Vector<T>::const_iterator p = S_[i].begin();
						p < S_[i].end(); p++ )
			{
					if (p->index() == i)
					{
						diag_[i] += p->value();
						break;
					}
			}
		}
		return diag_;
	}

	Vector<T> mult(const Vector<T> &x) const
	{
		int M = num_rows();
		Vector<T> y(M);
		for (int i=0; i<M; i++)
		{
			y[i] = dot_product(S_[i], x);
		}
		return y;
	}


	inline double norm() const
	{
		T sum(0.0);
		for (int i=0; i<num_rows_; i++)
		{
			for (typename Sparse_Vector<T>::const_iterator p = S_[i].begin();
						p < S_[i].end(); p++ )
			{
				sum += p->value() * p->value();
			}
		}
		return sqrt(sum);
	}

	std::ostream & print(std::ostream &s) const
	{
		for (int i=0; i<num_rows_; i++)
		{
			for (typename Sparse_Vector<T>::const_iterator p = S_[i].begin();
						p < S_[i].end(); p++ )
			{
				 s << "( " << p->value() << " , " << i << ", " << p->index() << " )\n";
			}
		}

    return s;
	}

	std::ostream & print_base_one(std::ostream &s) const
	{
		for (int i=0; i<num_rows_; i++)
		{
			for (typename Sparse_Vector<T>::const_iterator p = S_[i].begin();
						p < S_[i].end(); p++ )
			{
				 s <<"( "<<p->value()<<" , "<<i+1<<", "<< p->index()+1 << " )\n";
			}
		}

    return s;
	}
			
			
};


template <class T>
inline Vector<T> operator*(const Sparse_Matrix<T> &S, const Vector<T> &x) 
{
	return S.mult(x);
}

template <class T>
inline double norm(const Sparse_Matrix<T> &S)
{
	return S.norm();
}

template <class T>
inline	std::ostream& operator<<(std::ostream &s, const Sparse_Matrix<T> &A)
{
	return A.print(s);
}



//}  /* namspace TNT::Linear_Algebra */
}	 /* namspace TNT */

#endif