File: ccealignmodule.cpp

package info (click to toggle)
pymol 2.5.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 42,288 kB
  • sloc: cpp: 476,472; python: 76,538; ansic: 29,510; javascript: 6,792; sh: 47; makefile: 24
file content (650 lines) | stat: -rw-r--r-- 18,203 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
// ccealign -- structural alignment plugin modele for PyMol
/////////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) Jason Vertrees.
//  All rights reserved.
//
//  Redistribution and use in source and binary forms, with or without
//  modification, are permitted provided that the following conditions are
//  met:
//
//      * Redistributions of source code must retain the above copyright
//      notice, this list of conditions and the following disclaimer.
//
//      * Redistributions in binary form must reproduce the above copyright
//      notice, this list of conditions and the following disclaimer in
//      the documentation and/or other materials provided with the
//      distribution.
//
//  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
//  IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
//  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
//  PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
//  OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
//  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
//  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
//  PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
//  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
//  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//////////////////////////////////////////////////////////////////////////////

#ifndef _PYMOL_NOPY
#include "os_python.h"
#include "os_std.h"

#include "ce_types.h"

#include "tnt/tnt.h"
#include "tnt/jama_lu.h"
#include "tnt/jama_svd.h"

#define TA1 TNT::Array1D
#define TA2 TNT::Array2D


// tranpose of a matrix
static
TA2<double> transpose(const TA2<double>& v);


/////////////////////////////////////////////////////////////////////////////
// CE Specific
/////////////////////////////////////////////////////////////////////////////
double** calcDM(pcePoint coords, int len)
{
  int i = 0;

  double** dm = (double**) malloc(sizeof(double*)*len);
  for (i = 0; i < len; i++)
    dm[i] = (double*) malloc( sizeof(double)*len);

  int row=0, col=0;
  for (row = 0; row < len; row++) {
    for (col = 0; col < len; col++) {
      dm[row][col] = sqrt(pow(coords[row].x - coords[col].x,2) +
			  pow(coords[row].y - coords[col].y,2) +
			  pow(coords[row].z - coords[col].z,2) );
    }
  }
  return dm;
}

double** calcS(double** d1, double** d2, int lenA, int lenB, int wSize)
{
  int i;
  double winSize = (double) wSize;
  // initialize the 2D similarity matrix
  double** S = (double**) malloc(sizeof(double*)*lenA);
  for (i = 0; i < lenA; i++)
    S[i] = (double*) malloc( sizeof(double)*lenB);
  
  double sumSize = (winSize-1.0)*(winSize-2.0) / 2.0;
  //
  // This is where the magic of CE comes out.  In the similarity matrix,
  // for each i and j, the value of ceSIM[i][j] is how well the residues
  // i - i+winSize in protein A, match to residues j - j+winSize in protein
  // B.  A value of 0 means absolute match; a value >> 1 means bad match.
  //
  int iA, iB, row, col;
  for (iA = 0; iA < lenA; iA++) {
    for (iB = 0; iB < lenB; iB++) {
      S[iA][iB] = -1.0;
      if (iA > lenA - wSize || iB > lenB - wSize)
	continue;
		
      double score = 0.0;

      //
      // We always skip the calculation of the distance from THIS
      // residue, to the next residue.  This is a time-saving heur-
      // istic decision.  Almost all alpha carbon bonds of neighboring
      // residues is 3.8 Angstroms.  Due to entropy, S = -k ln pi * pi,
      // this tell us nothing, so it doesn't help so ignore it.
      //
      for (row = 0; row <  wSize - 2; row++) {
	for (col = row + 2; col <  wSize; col++) {
	  score += fabs( d1[iA+row][iA+col] - d2[iB+row][iB+col] );
	}
      }

      S[iA][iB] = score / sumSize;
    }
  }
  return S;
}



pcePoint getCoords(PyObject* L, int length)
{
  // make space for the current coords
  pcePoint coords = (pcePoint) malloc(sizeof(cePoint)*length);

  if (!coords)
    return NULL;

  // loop through the arguments, pulling out the
  // XYZ coordinates.
  int i;
  for ( i = 0; i < length; i++ ) {
    PyObject* curCoord = PyList_GetItem(L,i);
    Py_INCREF(curCoord);

    PyObject* curVal = PyList_GetItem(curCoord,0);
    Py_INCREF(curVal);
    coords[i].x = PyFloat_AsDouble(curVal);
    Py_DECREF(curVal);

    curVal = PyList_GetItem(curCoord,1);
    Py_INCREF(curVal);
    coords[i].y = PyFloat_AsDouble(curVal);
    Py_DECREF(curVal);

    curVal = PyList_GetItem(curCoord,2);
    Py_INCREF(curVal);
    coords[i].z = PyFloat_AsDouble(curVal);
    Py_DECREF(curVal);

    Py_DECREF(curCoord);
  }

  return coords;
}



pathCache findPath( double** S, double** dA, double** dB, int lenA, int lenB, float D0, float D1, int winSize, int gapMax, int * bufferSize )
{
  // CE-specific cutoffs
  const int MAX_KEPT = 20;

  // the best Path's score
  double bestPathScore = 1e6;
  int bestPathLength = 0;

  // length of longest possible alignment
  int smaller = ( lenA < lenB ) ? lenA : lenB;
  int winSum = (winSize-1)*(winSize-2)/2;

  path bestPath = (path) malloc(sizeof(afp)*smaller);

  // index variable for below
  int i, j;
  for ( i = 0; i < smaller; i++ ) {
    bestPath[i].first = -1;
    bestPath[i].second = -1;
  }

  //======================================================================
  // for storing the best 20 paths
  int bufferIndex = 0; //, bufferSize = 0;
  int lenBuffer[MAX_KEPT];
  double scoreBuffer[MAX_KEPT];
  pathCache pathBuffer = (pathCache) malloc(sizeof(path*)*MAX_KEPT);

  for ( i = 0; i < MAX_KEPT; i++ ) {
    // initialize the paths
    scoreBuffer[i] = 1e6;
    lenBuffer[i] = 0;
    pathBuffer[i] = 0;
  }

  // winCache
  // this array stores a list of residues seen.  We use it to calculate the
  // total score of a path from 1..M and then add it to M+1..N.
  int* winCache = (int*) malloc(sizeof(int)*smaller);
  for ( i = 0; i < smaller; i++ )
    winCache[i] = (i+1)*i*winSize/2 + (i+1)*winSum;

  // allScoreBuffer
  // this 2D array keeps track of all partial gapped scores
  double** allScoreBuffer = (double**) malloc(sizeof(double*)*smaller);
  for ( i = 0; i < smaller; i++ ) {
    allScoreBuffer[i] = (double*) malloc( (gapMax*2+1) * sizeof(double));
    // initialize the ASB
    for ( j = 0; j < gapMax*2+1; j++ )
      allScoreBuffer[i][j] = 1e6;
  }
	
  int* tIndex = (int*) malloc(sizeof(int)*smaller);
  int gapBestIndex = -1;

  //======================================================================
  // Start the search through the CE matrix.
  //
  int iA, iB;
  for ( iA = 0; iA < lenA; iA++ ) {
    if ( iA > lenA - winSize*(bestPathLength-1) )
      break;

    for ( iB = 0; iB < lenB; iB++ ) {
      if ( S[iA][iB] >= D0 )
	continue;
			
      if ( S[iA][iB] == -1.0 )
	continue;
			
      if ( iB > lenB - winSize*(bestPathLength-1) )
	break;

      //
      // Restart curPath here.
      //
      path curPath = (path) malloc( sizeof(afp)*smaller );

      int i;
      for ( i = 0; i < smaller; i++ ) {
	curPath[i].first = -1;
	curPath[i].second = -1;
      }
      curPath[0].first = iA;
      curPath[0].second = iB;
      int curPathLength = 1;
      tIndex[curPathLength-1] = 0;
      double curTotalScore = 0.0;

      //
      // Check all possible paths starting from iA, iB
      //
      int done = 0;
      while ( ! done ) {
	double gapBestScore = 1e6;
	gapBestIndex = -1;
	int g;

	//
	// Check all possible gaps [1..gapMax] from here
	//
	for ( g = 0; g < (gapMax*2)+1; g++ ) {
	  int jA = curPath[curPathLength-1].first + winSize;
	  int jB = curPath[curPathLength-1].second + winSize;

	  if ( (g+1) % 2 == 0 ) {
	    jA += (g+1)/2;
	  }
	  else { // ( g odd )
	    jB += (g+1)/2;
	  }

	  //
	  // Following are three heuristics to ensure high quality
	  // long paths and make sure we don't run over the end of
	  // the S, matrix.
					
	  // 1st: If jA and jB are at the end of the matrix
	  if ( jA > lenA-winSize || jB > lenB-winSize ){
	    // FIXME, was: jA > lenA-winSize-1 || jB > lenB-winSize-1
	    continue;
	  }
	  // 2nd: If this gapped octapeptide is bad, ignore it.
	  if ( S[jA][jB] > D0 )
	    continue;
	  // 3rd: if too close to end, ignore it.
	  if ( S[jA][jB] == -1.0 )
	    continue;
					
	  double curScore = 0.0;
	  int s;
	  for ( s = 0; s < curPathLength; s++ ) {
	    curScore += fabs( dA[curPath[s].first][jA] - dB[curPath[s].second][jB] );
	    curScore += fabs( dA[curPath[s].first  + (winSize-1)][jA+(winSize-1)] - 
			      dB[curPath[s].second + (winSize-1)][jB+(winSize-1)] );
	    int k;
	    for ( k = 1; k < winSize-1; k++ )
	      curScore += fabs( dA[curPath[s].first  + k][ jA + (winSize-1) - k ] - 
				dB[curPath[s].second + k][ jB + (winSize-1) - k ] );
	  }
					
	  curScore /= (double) winSize * (double) curPathLength;

	  if ( curScore >= D1 ) {
	    continue;
	  }

	  // store GAPPED best					
	  if ( curScore < gapBestScore ) {
	    curPath[curPathLength].first = jA;
	    curPath[curPathLength].second = jB;
	    gapBestScore = curScore;
	    gapBestIndex = g;
	    allScoreBuffer[curPathLength-1][g] = curScore;
	  }
	} /// ROF -- END GAP SEARCHING
				
	//
	// DONE GAPPING:
	//

	// calculate curTotalScore
	curTotalScore = 0.0;
	int jGap, gA, gB;
	double score1=0.0, score2=0.0;
				
	if ( gapBestIndex != -1 ) {
	  jGap = (gapBestIndex + 1 ) / 2;
	  if ((gapBestIndex + 1 ) % 2 == 0) {
	    gA = curPath[ curPathLength-1 ].first + winSize + jGap;
	    gB = curPath[ curPathLength-1 ].second + winSize;
	  }
	  else {
	    gA = curPath[ curPathLength-1 ].first + winSize;
	    gB = curPath[ curPathLength-1 ].second + winSize + jGap;
	  }

	  // perfect
	  score1 = (allScoreBuffer[curPathLength-1][gapBestIndex] * winSize * curPathLength
		    + S[gA][gB]*winSum)/(winSize*curPathLength+winSum);

	  // perfect
	  score2 = ((curPathLength > 1 ? (allScoreBuffer[curPathLength-2][tIndex[curPathLength-1]])
		     : S[iA][iB])
		    * winCache[curPathLength-1] 
		    + score1 * (winCache[curPathLength] - winCache[curPathLength-1]))
	    / winCache[curPathLength];

	  curTotalScore = score2;
	  // heuristic -- path is getting sloppy, stop looking
	  if ( curTotalScore > D1 ) {
	    done = 1;
	    gapBestIndex=-1;
	    break;
	  }
	  else {
	    allScoreBuffer[curPathLength-1][gapBestIndex] = curTotalScore;
	    tIndex[curPathLength] = gapBestIndex;
	    curPathLength++;
	  }
	}
	else {
	  // if here, then there was no good gapped path
	  // so quit and restart from iA, iB+1
	  done = 1;
	  curPathLength--;
	  break;
	}

	//
	// test this gapped path against the best seen
	// starting from iA, iB
	// 

	// if our currently best gapped path from iA and iB is LONGER
	// than the current best; or, it's equal length and the score's
	// better, keep the new path.
	if ( curPathLength > bestPathLength ||
	     (curPathLength == bestPathLength && curTotalScore < bestPathScore )) {
	  bestPathLength = curPathLength;
	  bestPathScore = curTotalScore;
	  // deep copy curPath
	  path tempPath = (path) malloc( sizeof(afp)*smaller );

	  int i;
	  for ( i = 0; i < smaller; i++ ) {
	    tempPath[i].first = curPath[i].first;
	    tempPath[i].second = curPath[i].second;
	  }

	  free(bestPath);
	  bestPath = tempPath;
	}
      } /// END WHILE

      //
      // At this point, we've found the best path starting at iA, iB.
      //
      if ( bestPathLength > lenBuffer[bufferIndex] ||
	   ( bestPathLength == lenBuffer[bufferIndex] &&
	     bestPathScore < scoreBuffer[bufferIndex] )) {

	// we're going to add an entry to the ring-buffer.
	// Adjust maxSize values and curIndex accordingly.
	bufferIndex = ( bufferIndex == MAX_KEPT-1 ) ? 0 : bufferIndex+1;
	*bufferSize = ( *bufferSize < MAX_KEPT ) ? (*bufferSize)+1 : MAX_KEPT;
	path pathCopy = (path) malloc( sizeof(afp)*smaller );

	int i;
	for ( i = 0; i < smaller; i++ ) {
	  pathCopy[i].first = bestPath[i].first;
	  pathCopy[i].second = bestPath[i].second;
	}

	if ( bufferIndex == 0 && (*bufferSize) == MAX_KEPT ) {
	  if ( pathBuffer[MAX_KEPT-1] )
	    free(pathBuffer[MAX_KEPT-1]); 
	  pathBuffer[MAX_KEPT-1] = pathCopy;
	  scoreBuffer[MAX_KEPT-1] = bestPathScore;
	  lenBuffer[MAX_KEPT-1] = bestPathLength;
	}
	else {	
	  if ( pathBuffer[bufferIndex-1] )
	    free(pathBuffer[bufferIndex-1]);
	  pathBuffer[bufferIndex-1] = pathCopy;
	  scoreBuffer[bufferIndex-1] = bestPathScore;
	  lenBuffer[bufferIndex-1] = bestPathLength;
	}
      }
      free(curPath); curPath=0;
    } // ROF -- end for iB
  } // ROF -- end for iA

  // free memory
  for ( i = 0; i < smaller; i++ )
    free(allScoreBuffer[i]);
  free(allScoreBuffer);
  free(tIndex);
  free(winCache);
  free(bestPath);

  return pathBuffer;
}




PyObject* findBest( pcePoint coordsA, pcePoint coordsB, pathCache paths, int bufferSize, int smaller, int winSize )
{
  // keep the best values
  double bestRMSD = 1e6;
  TA2<double> bestU;
  TA1<double> bestCOM1, bestCOM2;
  int bestLen = 0;
  int bestO = -1;
	
  // loop through the buffer
  for ( int o = 0; o < bufferSize; o++ ) {

    // grab the current path
    TA2<double> c1(smaller, 3, 0.0);
    TA2<double> c2(smaller, 3, 0.0);
    int curLen = 0;
	
    int j = 0; int it = 0;
    while ( j < smaller ) {
			
      // rebuild the coordinate lists for this path
      if ( paths[o][j].first != -1 )
	{
	  for ( int k = 0; k < winSize; k++ )
	    {
	      double t1[] = { coordsA[ paths[o][j].first +k ].x, 
			      coordsA[ paths[o][j].first +k ].y, 
			      coordsA[ paths[o][j].first +k ].z };

	      double t2[] = { coordsB[ paths[o][j].second+k ].x, 
			      coordsB[ paths[o][j].second+k ].y, 
			      coordsB[ paths[o][j].second+k ].z };

	      for ( int d = 0; d < c1.dim2(); d++ ) {
		c1[it][d] =  t1[d];
		c2[it][d] =  t2[d];
	      }
	      it++;
	    }
	  j++;
	}
      else {
	curLen = it;
	break;
      }
    }

    //
    // For convenience, let there be M points of N dimensions
    //	
    int m = curLen;
    int n = c2.dim2();
	
    //==========================================================================
    //	
    // Superpose the two proteins	
    //	
    //==========================================================================
	
    // centers of mass for c1 and c2
    TA1<double> c1COM(n,0.0);
    TA1<double> c2COM(n,0.0);
		
    // Calc CsOM	
    for (int i = 0; i < m; i++ )
      {
	for (int j = 0; j < n; j++ )
	  {
	    c1COM[j] += (double) c1[i][j] / (double) m;
	    c2COM[j] += (double) c2[i][j] / (double) m;
	  }
      }

    // Move the two vectors to the origin	
    for (int i = 0; i < m; i++ )
      {
	for (int j = 0; j < n; j++ )
	  {
	    c1[i][j] -= c1COM[j];
	    c2[i][j] -= c2COM[j];
	  }
      }

    //==========================================================================
    //	
    // Calculate U and RMSD.  This is broken down to the super-silly-easy	
    // math of: U = Wt * V, where Wt and V are NxN matrices from the SVD of 	
    // R, the correlation matrix between the two origin-based vector sets.	
    //	
    //==========================================================================	
		
    // Calculate the initial residual, E0	
    // E0 = sum( Yn*Yn + Xn*Xn ) -- sum of squares	
    double E0 = 0.0;
    for (int i = 0; i < m; i++ )
      {
	for (int j = 0; j < n; j++ )
	  {
	    E0 += (c1[i][j]*c1[i][j])+(c2[i][j]*c2[i][j]);
	  }
      }
		
    //		
    // SVD is the SVD of the correlation matrix Xt*Y	
    // R = c2' * c1 = W * S * Vt	
    JAMA::SVD<double> svd = JAMA::SVD<double>( TNT::matmult(transpose(c2), c1 ) );
	
    // left singular vectors
    TA2<double> W = TA2<double>(n,n);
    // right singular vectors
    TA2<double> Vt = TA2<double>(n,n);
    // singular values		
    TA1<double> sigmas = TA1<double>(n);
		
    svd.getU(W);
    svd.getV(Vt);
    Vt = transpose(Vt);
    svd.getSingularValues(sigmas);
		
    //	
    // Check any reflections before rotation of the points;			
    // if det(W)*det(V) == -1 then we just reflect		
    // the principal axis corresponding to the smallest eigenvalue by -1	
    //		
    JAMA::LU<double> LU_Vt(Vt);
    JAMA::LU<double> LU_W(W);
		
    if ( LU_W.det() * LU_Vt.det() < 0.0 )
      {
	//std::cout << "_________REFLECTION_________" << std::endl;	
			
	// revese the smallest axes and last sigma	
			
	for ( int i = 0; i < n; i++ )
	  W[n-1][i] = -W[n-1][i];
			
	sigmas[n-1] = -sigmas[n-1];
      }
		
    // calculate the rotation matrix, U.	
    // U = W * Vt	
    TA2<double> U = TA2<double>(TNT::matmult(W, Vt));

    //	
    // Now calculate the RMSD	
    //	
    double sig = 0.0;
    for ( int i = 0; i < (int) n; i++ )
      sig += sigmas[i];
		
    double curRMSD = sqrt(fabs((E0 - 2*sig) / (double) m ));

    //
    // Save the best
    //
    if ( curRMSD < bestRMSD || ( curRMSD == bestRMSD && c1.dim1() > bestLen )) {
      bestU = U.copy();
      bestRMSD = curRMSD;
      bestCOM1 = c1COM.copy();
      bestCOM2 = c2COM.copy();
      bestLen = curLen;
      bestO = o;
    }
  }

  if ( bestRMSD == 1e6 ) {
    std::cout << "ERROR: Best RMSD found was 1e6.  Broken.\n";
    return NULL;
  }

  PyObject* pyU = Py_BuildValue( "[f,f,f,f, f,f,f,f, f,f,f,f, f,f,f,f]",
				 bestU[0][0], bestU[1][0], bestU[2][0], bestCOM1[0],
				 bestU[0][1], bestU[1][1], bestU[2][1], bestCOM1[1],
				 bestU[0][2], bestU[1][2], bestU[2][2], bestCOM1[2],
				 -bestCOM2[0], -bestCOM2[1], -bestCOM2[2], 1.);
	
  PyObject* pyPathA = PyList_New(0);
  PyObject* pyPathB = PyList_New(0);
  for (int j = 0; j < smaller && paths[bestO][j].first != -1; j++) {
    PyObject* v = Py_BuildValue("i", paths[bestO][j].first);
    PyList_Append(pyPathA, v);
    Py_DECREF(v);
    v = Py_BuildValue("i", paths[bestO][j].second);
    PyList_Append(pyPathB, v);
    Py_DECREF(v);
  }

  return Py_BuildValue("[ifNNN]", bestLen, bestRMSD, pyU, pyPathA, pyPathB);
}


TA2<double> transpose(const TA2<double>& v)
{
  int m = (int) v.dim1();
  int n = (int) v.dim2();
	
  TA2<double> rVal(n,m);
	
  for ( int i = 0; i < m; i++ )
    for ( int j = 0; j < n; j++ )
      rVal[j][i] = v[i][j];
		
  return rVal;
}
#endif