File: Mol2Typing.cpp

package info (click to toggle)
pymol 2.5.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 42,288 kB
  • sloc: cpp: 476,472; python: 76,538; ansic: 29,510; javascript: 6,792; sh: 47; makefile: 24
file content (190 lines) | stat: -rw-r--r-- 4,628 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*
 * Mol2 atom typing
 *
 * (c) Schrodinger, Inc.
 */

#include "os_std.h"

#include "Mol2Typing.h"
#include "AtomInfo.h"
#include "ObjectMolecule.h"

/**
 * atm: Atom index of a carbon atom with geom=3
 *
 * Return: True if atm has 3 neighbors which are all nitrogens with geom=3
 */
static bool isGuanidiniumCarbon(ObjectMolecule * obj, int atm) {
  int neighbor_count = 0;
  int charge = 0;

  for (auto const& item : AtomNeighbors(obj, atm)) {
    AtomInfoType const* neighbor = obj->AtomInfo.data() + item.atm;
    if (neighbor->protons != cAN_N || neighbor->geom != 3)
      return false;
    ++neighbor_count;
    charge += neighbor->formalCharge;
  }

  return neighbor_count == 3 && charge > 0;
}

/**
 * TODO: bond order 4 seems to be no guarantee for a ring, which is
 * required for aromaticity
 *
 * Return: always false, since PyMOL doesn't know enough about aromaticity
 */
static bool isAromaticAtom(ObjectMolecule * obj, int atm) {
#if 0
  for (auto const& neighbor : AtomNeighbors(obj, atm)) {
    if (obj->Bond[neighbor.bond].order == 4)
      return true;
  }
#endif

  return false;
}

/**
 * atm: Atom index of an oxygen atom
 *
 * Return: True if atom is part of a carboxylate or phosphate group
 */
static bool isCarboxylateOrPhosphateOxygen(ObjectMolecule * obj, int atm) {
  int o_count = 0, other_count = 0;

  auto const neighbors = AtomNeighbors(obj, atm);

  // must have only one neighbor
  if (neighbors.size() != 1)
    return false;

  // get that one neighbor as center of the acidic group
  atm = neighbors[0].atm;

  // check center atom
  AtomInfoType * ai = obj->AtomInfo + atm;
  if (!(ai->protons == cAN_C && ai->geom == 3) &&
      !(ai->protons == cAN_P && ai->geom == 4))
    return false;

  // iterate over neighbors of center atom
  for (auto const& item : AtomNeighbors(obj, atm)) {
    AtomInfoType const* neighbor = obj->AtomInfo.data() + item.atm;
    if (neighbor->protons == cAN_O)
      ++o_count;
    else
      ++other_count;
  }

  // carboxylate
  if (ai->protons == cAN_C)
    return (o_count == 2 && other_count == 1);

  // phosphate
  return (o_count == 4 && other_count == 0);
}

/**
 * atm: Atom index of a sulfur atom
 *
 * Return: Number of bound Oxygens if bound to two non-Oxygen atoms. Otherwise 0.
 */
static int sulfurCountOxygenNeighbors(ObjectMolecule * obj, int atm) {
  int o_count = 0, other_count = 0;

  for (auto const& item : AtomNeighbors(obj, atm)) {
    AtomInfoType const* neighbor = obj->AtomInfo.data() + item.atm;
    if (neighbor->protons == cAN_O)
      ++o_count;
    else
      ++other_count;
  }

  return (other_count == 2) ? o_count : 0;
}

/**
 * Get the Tripos Mol2 atom type
 *
 * Pre-condition: ObjectMoleculeVerifyChemistry
 */
const char * getMOL2Type(ObjectMolecule * obj, int atm) {
  auto G = obj->G;
  auto ai = obj->AtomInfo + atm;

  switch (ai->protons) {
    case cAN_C:
      switch (ai->geom) {
        case cAtomInfoLinear:
          return "C.1";
        case cAtomInfoPlanar:
          if (isAromaticAtom(obj, atm))
            return "C.ar";
          if (isGuanidiniumCarbon(obj, atm))
            return "C.cat";
          return "C.2";
        case cAtomInfoTetrahedral:
          return "C.3";
      }
      break;

    case cAN_N:
      switch (ai->geom) {
        case cAtomInfoLinear:
          return "N.1";
        case cAtomInfoPlanar:
          if ((ai->flags & cAtomFlag_polymer)
              && ai->name == G->lex_const.N)
            return "N.am";
          if (isAromaticAtom(obj, atm))
            return "N.ar";
          if (ai->valence == 2 && ai->formalCharge == 0)
            return "N.2";
          return "N.pl3";
        case cAtomInfoTetrahedral:
          return (ai->formalCharge == 1) ? "N.4" : "N.3";
      }
      break;

    case cAN_O:
      if (isCarboxylateOrPhosphateOxygen(obj, atm))
        return "O.co2";
      switch (ai->geom) {
        case cAtomInfoPlanar:       return "O.2";
        case cAtomInfoTetrahedral:  return "O.3";
      }
      break;

    case cAN_S:
      switch (sulfurCountOxygenNeighbors(obj, atm)) {
        case 1: return "S.o";
        case 2: return "S.o2";
      }
      switch (ai->geom) {
        case cAtomInfoPlanar:       return "S.2";
        case cAtomInfoTetrahedral:  return "S.3";
      }
      break;

    case cAN_P:
      if (ai->geom == 4)
        return "P.3";
      break;

    case cAN_Cr:
      if (ai->geom == 4)
        return "Cr.th";
      return "Cr.oh";

    case cAN_Co:
      return "Co.oh";
  }

  if (ai->protons >= 0 && ai->protons < ElementTableSize)
    return ElementTable[ai->protons].symbol;

  return "Du";
}