File: ObjectMolecule3.cpp

package info (click to toggle)
pymol 2.5.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 42,288 kB
  • sloc: cpp: 476,472; python: 76,538; ansic: 29,510; javascript: 6,792; sh: 47; makefile: 24
file content (250 lines) | stat: -rw-r--r-- 6,533 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * (c) Schrodinger, Inc.
 */

#include "os_predef.h"

#include "CoordSet.h"
#include "Feedback.h"
#include "ObjectMolecule.h"
#include "ObjectMolecule3.h"
#include "Vector.h"

#include <cassert>
#include <cmath>
#include <unordered_map>
#include <vector>

/**
 * Find and enumerate molecules and return the mapping of atom indices to
 * molecule identifiers.
 *
 * A molecule is a set of atoms which is connected by bonds of non-zero order.
 */
static std::vector<int> ObjectMoleculeGetMolMappingVec(
    ObjectMolecule const& objmol)
{
  std::vector<int> mapping(size_t(objmol.NAtom));

  auto const inv = [](int x) { return -(x + 1); };

  auto const get_mol = [&mapping](int atm) {
    while (atm >= 0)
      atm = mapping[atm];
    return atm;
  };

  for (size_t i = 0; i != mapping.size(); ++i) {
    mapping[i] = inv(i);
    assert(mapping[i] < 0);
  }

  for (size_t b = 0; b < objmol.NBond; ++b) {
    auto const& bnd = objmol.Bond[b];

    // Exclude zero-order bonds, but include symop bonds
    if (bnd.order < 1) {
      continue;
    }

    auto mol0 = get_mol(bnd.index[0]);
    auto mol1 = get_mol(bnd.index[1]);

    assert(mol0 < 0);
    assert(mol1 < 0);
    assert(mapping[inv(mol0)] == mol0);

    if (mol0 != mol1) {
      mapping[inv(mol1)] = inv(mol0);
    }
  }

  for (auto& atm : mapping) {
    atm = get_mol(atm);
  }

  return mapping;
}

static std::unordered_map<int, std::vector<unsigned>>
ObjectMoleculeGetMolMappingMap(ObjectMolecule const& objmol)
{
  std::unordered_map<int, std::vector<unsigned>> molecules;
  auto const molmapvec = ObjectMoleculeGetMolMappingVec(objmol);
  for (unsigned atm = 0; atm != molmapvec.size(); ++atm) {
    molecules[molmapvec[atm]].push_back(atm);
  }
  return molecules;
}

/**
 * Unwrap periodic boundary conditions so that molecules don't jump.
 */
void ObjectMoleculePBCUnwrap(ObjectMolecule& objmol, bool const bymol)
{
  auto G = objmol.G;
  CoordSet const* cs_prev = nullptr;
  CoordSet* cs_curr = nullptr;

  bool sg_warning_shown = false;

  auto const molecules = ObjectMoleculeGetMolMappingMap(objmol);

  for (StateIndex_t state = 0; state != objmol.NCSet;
       ++state, cs_prev = cs_curr) {
    cs_curr = objmol.CSet[state];
    if (!cs_curr)
      continue;

    auto const* sym = cs_curr->getSymmetry();
    if (!sym || sym->Crystal.isSuspicious())
      continue;

    if (!sg_warning_shown) {
      auto sg = pymol::zstring_view(sym->spaceGroup());
      if (sg != "" && sg != "P 1" && sg != "P1") {
        PRINTFB(G, FB_ObjectMolecule, FB_Warnings)
        " %s-Warning: Space group is not 'P 1'.\n", __func__ ENDFB(G);
        sg_warning_shown = true;
      }
    }

    CoordSetRealToFrac(cs_curr, &(sym->Crystal));

    if (!cs_prev)
      continue;

    if (bymol) /* by molecule */ {
      for (auto const& mol : molecules) {
        double center_prev[4] = {};
        double center_curr[4] = {};

        for (auto atm : mol.second) {
          auto const idx_prev = cs_prev->atmToIdx(atm);
          auto const idx_curr = cs_curr->atmToIdx(atm);
          if (idx_prev != -1) {
            pymol::add3(center_prev, cs_prev->coordPtr(idx_prev), center_prev);
            center_prev[3] += 1;
          }
          if (idx_curr != -1) {
            pymol::add3(center_curr, cs_curr->coordPtr(idx_curr), center_curr);
            center_curr[3] += 1;
          }
        }

        float offset[3] = {};
        for (int i = 0; i != 3; ++i) {
          center_prev[i] /= center_prev[3];
          center_curr[i] /= center_curr[3];
          offset[i] = std::round(center_curr[i] - center_prev[i]);
        }

        for (auto atm : mol.second) {
          auto const idx = cs_curr->atmToIdx(atm);
          if (idx != -1) {
            auto* coord = cs_curr->coordPtr(idx);
            pymol::subtract3(coord, offset, coord);
          }
        }
      }
    } else /* by atom */ {
      for (unsigned atm = 0; atm != objmol.NAtom; ++atm) {
        auto const idx_prev = cs_prev->atmToIdx(atm);
        auto const idx_curr = cs_curr->atmToIdx(atm);

        if (idx_prev == -1 || idx_curr == -1)
          continue;

        auto* coord_prev = cs_prev->coordPtr(idx_prev);
        auto* coord_curr = cs_curr->coordPtr(idx_curr);

        for (int i = 0; i != 3; ++i) {
          coord_curr[i] -= std::round(coord_curr[i] - coord_prev[i]);
        }
      }
    }
  }

  for (StateIndex_t state = 0; state != objmol.NCSet; ++state) {
    cs_curr = objmol.CSet[state];
    if (!cs_curr)
      continue;

    auto const* sym = cs_curr->getSymmetry();
    if (!sym || sym->Crystal.isSuspicious())
      continue;

    CoordSetFracToReal(cs_curr, &(sym->Crystal));
  }

  objmol.invalidate(cRepAll, cRepInvCoord, cStateAll);
}

/**
 * Wrap molecules into periodic boundary box.
 *
 * @param center Target box center in real space
 */
void ObjectMoleculePBCWrap(ObjectMolecule& objmol, float const* center)
{
  float center_auto[3];

  auto const molecules = ObjectMoleculeGetMolMappingMap(objmol);

  for (StateIndex_t state = 0; state != objmol.NCSet; ++state) {
    auto* cs = objmol.CSet[state];
    if (!cs)
      continue;

    auto const* sym = cs->getSymmetry();
    if (!sym || sym->Crystal.isSuspicious())
      continue;

    // Default center is the coordinate average of the first state
    if (!center) {
      pymol::meanNx3(cs->Coord.data(), cs->NIndex, center_auto);
      center = center_auto;
    }

    CoordSetRealToFrac(cs, &(sym->Crystal));

    // Apply inverse state matrix to center
    float centerX[3];
    if (cs->getPremultipliedMatrix()) {
      transform44d3f(ObjectStateGetInvMatrix(cs), center, centerX);
    } else {
      copy3(center, centerX);
    }

    // Center in fractional coordinates
    transform33f3f(sym->Crystal.realToFrac(), centerX, centerX);

    for (auto const& mol : molecules) {
      double molcenter[4] = {};

      for (auto atm : mol.second) {
        auto const idx = cs->atmToIdx(atm);
        if (idx != -1) {
          pymol::add3(molcenter, cs->coordPtr(idx), molcenter);
          molcenter[3] += 1;
        }
      }

      for (int i = 0; i != 3; ++i) {
        molcenter[i] = std::round(molcenter[i] / molcenter[3] - centerX[i]);
      }

      for (auto atm : mol.second) {
        auto const idx = cs->atmToIdx(atm);
        if (idx != -1) {
          auto* coord = cs->coordPtr(idx);
          pymol::subtract3(coord, molcenter, coord);
        }
      }
    }

    CoordSetFracToReal(cs, &(sym->Crystal));
  }

  objmol.invalidate(cRepAll, cRepInvCoord, cStateAll);
}