File: RepEllipsoid.cpp

package info (click to toggle)
pymol 2.5.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 42,288 kB
  • sloc: cpp: 476,472; python: 76,538; ansic: 29,510; javascript: 6,792; sh: 47; makefile: 24
file content (344 lines) | stat: -rw-r--r-- 10,192 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

/* 
   A* -------------------------------------------------------------------
   B* This file contains source code for the PyMOL computer program
   C* copyright 1998-2000 by Warren Lyford Delano of DeLano Scientific. 
   D* -------------------------------------------------------------------
   E* It is unlawful to modify or remove this copyright notice.
   F* -------------------------------------------------------------------
   G* Please see the accompanying LICENSE file for further information. 
   H* -------------------------------------------------------------------
   I* Additional authors of this source file include:
   -* 
   -* 
   -*
   Z* -------------------------------------------------------------------
*/
#include"os_python.h"

#include"os_predef.h"
#include"os_std.h"
#include"os_gl.h"

#include"Base.h"
#include"OOMac.h"
#include"RepEllipsoid.h"
#include"Color.h"
#include"Setting.h"
#include"Feedback.h"
#include"Matrix.h"
#include"CGO.h"

struct RepEllipsoid : Rep {
  using Rep::Rep;

  ~RepEllipsoid() override;

  cRep_t type() const override { return cRepEllipsoid; }
  void render(RenderInfo* info) override;

  CGO* ray = nullptr;
  CGO* std = nullptr;
  CGO* shaderCGO = nullptr;
};

#include"ObjectMolecule.h"

RepEllipsoid::~RepEllipsoid()
{
  auto I = this;
  CGOFree(I->ray);
  CGOFree(I->std);
  CGOFree(I->shaderCGO);
}

void RepEllipsoid::render(RenderInfo* info)
{
  auto I = this;
  CRay *ray = info->ray;
  auto pick = info->pick;
  int ok = true;

  PyMOLGlobals *G = I->G;
  if(ray) {
    int try_std = false;
    PRINTFD(G, FB_RepEllipsoid)
      " RepEllipsoidRender: rendering ray...\n" ENDFD;

    if(I->ray){
      int rayok = CGORenderRay(I->ray, ray, info, NULL, NULL, I->cs->Setting.get(), I->obj->Setting.get());
      if (!rayok){
	CGOFree(I->ray);
	try_std = true;
      }
    } else {
      try_std = true;
    }
    if(try_std && I->std){
      ok &= CGORenderRay(I->std, ray, info, NULL, NULL, I->cs->Setting.get(), I->obj->Setting.get());
      if (!ok){
	CGOFree(I->std);
      }
    }
    CHECKOK(ok, I->std);
  } else if(G->HaveGUI && G->ValidContext) {

    if(pick) {
      if(I->shaderCGO) {
        CGORenderGLPicking(I->shaderCGO, info, &I->context,
                           I->cs->Setting.get(), I->obj->Setting.get());
      } else if(I->std) {
        CGORenderGLPicking(I->std, info, &I->context,
                           I->cs->Setting.get(), I->obj->Setting.get());
      }
    } else {
      int use_shaders;
      use_shaders = SettingGetGlobal_b(G, cSetting_use_shaders);
      
        PRINTFD(G, FB_RepEllipsoid)
          " RepEllipsoidRender: rendering GL...\n" ENDFD;

	if (use_shaders){
	  if (!I->shaderCGO){
            I->shaderCGO = CGOOptimizeToVBONotIndexed(I->std, 0);
            assert(I->shaderCGO->use_shader);
	  }
	} else {
	  CGOFree(I->shaderCGO);	  
	}
	if (I->shaderCGO){
          CGORenderGL(I->shaderCGO, NULL, I->cs->Setting.get(), I->obj->Setting.get(), info, I);
	} else if(I->std){
          CGORenderGL(I->std, NULL, I->cs->Setting.get(), I->obj->Setting.get(), info, I);
	}
    }
  }
}

const double problevel[50] = { 0.4299, 0.5479, 0.6334, 0.7035, 0.7644,
  0.8192, 0.8694, 0.9162, 0.9605, 1.0026,
  1.0430, 1.0821, 1.1200, 1.1570, 1.1932,
  1.2288, 1.2638, 1.2985, 1.3330, 1.3672,
  1.4013, 1.4354, 1.4695, 1.5037, 1.5382,
  1.5729, 1.6080, 1.6436, 1.6797, 1.7164,
  1.7540, 1.7924, 1.8318, 1.8724, 1.9144,
  1.9580, 2.0034, 2.0510, 2.1012, 2.1544,
  2.2114, 2.2730, 2.3404, 2.4153, 2.5003,
  2.5997, 2.7216, 2.8829, 3.1365, 6.0000
};

/**
 * Return true if backbone atom that should be hidden with side_chain_helper
 */
static bool is_sidechainhelper_hidden(PyMOLGlobals * G, const AtomInfoType * ai) {
  if (!(ai->flags & cAtomFlag_polymer))
    return false;

  switch (ai->protons) {
    case cAN_C:
      return ai->name == G->lex_const.C;
    case cAN_N:
      return ai->name == G->lex_const.N && ai->resn != G->lex_const.PRO;
    case cAN_O:
      return ai->name == G->lex_const.O;
  }

  return false;
}

Rep *RepEllipsoidNew(CoordSet * cs, int state)
{
  PyMOLGlobals *G = cs->G;
  ObjectMolecule *obj;
  int ok = true;

  // skip if no dots are visible
  if(!cs->hasRep(cRepEllipsoidBit))
    return NULL;

  auto I = new RepEllipsoid(cs, state);
  CHECKOK(ok, I);
  if (!ok)
    return NULL;

  obj = cs->Obj;

  {
    int ellipsoid_color = SettingGet_color(G, cs->Setting.get(), obj->Setting.get(),
                                           cSetting_ellipsoid_color);

    int cartoon_side_chain_helper = SettingGet_b(G, cs->Setting.get(), obj->Setting.get(),
                                                 cSetting_cartoon_side_chain_helper);

    int ribbon_side_chain_helper = SettingGet_b(G, cs->Setting.get(), obj->Setting.get(),
                                                cSetting_ribbon_side_chain_helper);

    float ellipsoid_scale = SettingGet_f(G, cs->Setting.get(), obj->Setting.get(),
                                         cSetting_ellipsoid_scale);

    float transp = SettingGet_f(G, cs->Setting.get(), obj->Setting.get(),
                                cSetting_ellipsoid_transparency);

    int pickable = SettingGet_b(G, cs->Setting.get(), obj->Setting.get(),
                                cSetting_pickable);

    float prob = SettingGet_f(G, cs->Setting.get(), obj->Setting.get(),
                              cSetting_ellipsoid_probability);
    double matrix_factor = 0.0F;
    float pradius = 0.0F;
    {

      int iprob = (prob + 0.01F) * 50.0F - 1;
      if(iprob < 0)
        iprob = 0;
      if(iprob > 49)
        iprob = 49;
      pradius = problevel[iprob];
      matrix_factor = -(1 / (pradius * pradius));
    }

    I->ray = CGONew(G);         /* describe the ellipsoids analytically */
    CHECKOK(ok, I->ray);
    if(I->ray) {
      int a, a1;
      AtomInfoType *ai;
      float last_alpha = 1.0F;

      double *csmatrix = SettingGet_i(G, cs->Setting.get(), obj->Setting.get(),
            cSetting_matrix_mode) > 0 ? NULL : cs->Matrix.data();

      for(a = 0; a < cs->NIndex; a++) {
        a1 = cs->IdxToAtm[a];
        ai = obj->AtomInfo + a1;
        if (!ai->anisou || !(ai->visRep & cRepEllipsoidBit))
          continue;

        if (is_sidechainhelper_hidden(G, ai)) {
          if ((ai->visRep & cRepCartoonBit) && AtomSettingGetWD(G, ai,
                cSetting_cartoon_side_chain_helper, /* d= */ cartoon_side_chain_helper))
            continue;

          if ((ai->visRep & cRepRibbonBit) && AtomSettingGetWD(G, ai,
                cSetting_ribbon_side_chain_helper, /* d= */ ribbon_side_chain_helper))
            continue;
        }

        {
          {
            int n_rot;
            double matrix[16];
            double e_val[4];
            double e_vec[16];

            matrix[0] = ai->anisou[0];  // U11
            matrix[1] = ai->anisou[3];  // U12
            matrix[2] = ai->anisou[4];  // U13
            matrix[3] = 0.0;
            matrix[4] = ai->anisou[3];  // U12
            matrix[5] = ai->anisou[1];  // U22
            matrix[6] = ai->anisou[5];  // U23
            matrix[7] = 0.0;
            matrix[8] = ai->anisou[4];  // U13
            matrix[9] = ai->anisou[5];  // U23
            matrix[10] = ai->anisou[2]; // U33
            matrix[11] = 0.0;
            matrix[12] = 0.0;
            matrix[13] = 0.0;
            matrix[14] = 0.0;
            matrix[15] = matrix_factor;

            if(xx_matrix_jacobi_solve(e_vec, e_val, &n_rot, matrix, 4)) {

              const float* v = cs->coordPtr(a);

              float mag[3];
              float scale[3];

              float mx;
              float r_el, n0[3], n1[3], n2[3];

              float at_ellipsoid_scale  = AtomSettingGetWD(G, ai, cSetting_ellipsoid_scale, ellipsoid_scale);
              float at_transp           = AtomSettingGetWD(G, ai, cSetting_ellipsoid_transparency, transp);
              int c1                    = AtomSettingGetWD(G, ai, cSetting_ellipsoid_color, ellipsoid_color);

              if(c1 == -1)
                c1 = ai->color;

              if(csmatrix)
                left_multiply44d44d(csmatrix, e_vec);

              n0[0] = e_vec[0];
              n0[1] = e_vec[4];
              n0[2] = e_vec[8];
              n1[0] = e_vec[1];
              n1[1] = e_vec[5];
              n1[2] = e_vec[9];
              n2[0] = e_vec[2];
              n2[1] = e_vec[6];
              n2[2] = e_vec[10];

              normalize3f(n0);
              normalize3f(n1);
              normalize3f(n2);
              mag[0] = sqrt1f(e_val[0]);
              mag[1] = sqrt1f(e_val[1]);
              mag[2] = sqrt1f(e_val[2]);

              mx = mag[0];
              if(mx < mag[1])
                mx = mag[1];
              if(mx < mag[2])
                mx = mag[2];

              scale[0] = mag[0] / mx;
              scale[1] = mag[1] / mx;
              scale[2] = mag[2] / mx;

              scale3f(n0, scale[0], n0);
              scale3f(n1, scale[1], n1);
              scale3f(n2, scale[2], n2);

              r_el = mx * pradius * at_ellipsoid_scale;

              {
                float vc[3];
                if(ColorCheckRamped(G, c1)) {
                  ColorGetRamped(G, c1, v, vc, state);
                  ok &= CGOColorv(I->ray, vc);
                } else {
                  ok &= CGOColorv(I->ray, ColorGet(G, c1));
                }
              }

              if (ok) {
                float alpha = 1.0F - at_transp;
                if(alpha != last_alpha) {
                  ok &= CGOAlpha(I->ray, alpha);
                  last_alpha = alpha;

                  if (at_transp > 0) {
                    I->setHasTransparency();
                  }
                }
              }
              if(ok && pickable && (!ai->masked))
                ok &= CGOPickColor(I->ray, a1, cPickableAtom);

              if (ok)
		ok &= CGOEllipsoid(I->ray, v, r_el, n0, n1, n2);
            }
          }
        }
      }
      if (ok)
	ok &= CGOStop(I->ray);
      I->std = CGOSimplify(I->ray, 0);  /* convert analytical to discrete */
      CHECKOK(ok, I->std);
    }
  }
  if (!ok){
    delete I;
    I = NULL;
  }
  return (Rep *) I;
}