File: Vector.h

package info (click to toggle)
pymol 3.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 74,084 kB
  • sloc: cpp: 482,660; python: 89,328; ansic: 29,512; javascript: 6,792; sh: 84; makefile: 25
file content (538 lines) | stat: -rw-r--r-- 16,649 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538


/* 
A* -------------------------------------------------------------------
B* This file contains source code for the PyMOL computer program
C* Copyright (c) Schrodinger, LLC. 
D* -------------------------------------------------------------------
E* It is unlawful to modify or remove this copyright notice.
F* -------------------------------------------------------------------
G* Please see the accompanying LICENSE file for further information. 
H* -------------------------------------------------------------------
I* Additional authors of this source file include:
-* 
-* 
-*
Z* -------------------------------------------------------------------
*/
#ifndef _H_Vector
#define _H_Vector

#include"os_predef.h"
#include"os_gl.h"
#include<math.h>

#include <cassert>
#include <algorithm>

/* NOTE THIS VERSION USES RADIANS BY DEFAULT! */


/* NOTE: Matrices are assumed to be row-major (C-like not
 * OpenGL-like) unless explictly labeled as per the following
 * conventions:
 * 
 * row-major:    33f, 33d, 44f, 44d, R33f, R33d, R44f, R44d
 * column-major: C33f, C33d, C44f, C44d
 */

#define cPI            3.14159265358979323846   /* pi */

#define GET_BIT(val, bit)       (((val) >> (bit)) & 1)
#define SET_BIT(val, bit)       (val) |= (1 << (bit))
#define SET_BIT_OFF(val, bit)   (val) &= ~(1 << (bit))
#define SET_BIT_TO(val, bit, v) {if(v) SET_BIT(val, bit); else SET_BIT_OFF(val, bit);}

short countBits(unsigned long bits);
short countBitsInt(int bits);

typedef float Vector3f[3];      /* for local vars only - use float* for parameters */
typedef float Vector4f[4];
typedef int Vector3i[3];

typedef float Matrix33f[3][3];
typedef double Matrix33d[3][3];
typedef float Matrix53f[5][3];
typedef double Matrix53d[5][3];

unsigned int optimizer_workaround1u(unsigned int value);

float get_random0to1f(void);

float deg_to_rad(float angle);
float rad_to_deg(float angle);

void normalize23f(const float *v1, float *v2);
void normalize2f(float *v1);
void normalize4f(float *v1);

void clamp3f(float *v1);
void get_divergent3f(const float *src, float *dst);
void get_random3f(float *x);
void scatter3f(float *v, float weight);
void wiggle3f(float *v, const float *p, const float *s);
void extrapolate3f(const float *v1, const float *unit, float *result);

void mix3f(const float *v1, const float *v2, float fxn, float *v3);
void mix3d(const double *v1, const double *v2, double fxn, double *v3);

void get_system3f(float *x, float *y, float *z);        /* make random system */
void get_system1f3f(float *x, float *y, float *z);      /* make system in direction of x */
void get_system2f3f(float *x, float *y, float *z);      /* make system in direction of x, perp to x,y */

double distance_line2point3f(const float *base, const float *normal, const float *point,
                             float *alongNormalSq);
double distance_halfline2point3f(const float *base, const float *normal, const float *point,
                                 float *alongNormalSq);

int equal3f(const float *v1, const float *v2);

int pymol_roundf(float f);

float get_angle3f(const float *v1, const float *v2);
float get_dihedral3f(const float *v0, const float *v1, const float *v2, const float *v3);

void min3f(const float *v1, const float *v2, float *v3);
void max3f(const float *v1, const float *v2, float *v3);

void dump3i(const int *v, const char *prefix);
void dump2f(const float *v, const char *prefix);
void dump3f(const float *v, const char *prefix);
void dump3d(const double *v, const char *prefix);
void dump4f(const float *v, const char *prefix);
void dump33f(const float *m, const char *prefix);
void dump33d(const double *m, const char *prefix);
void dump44f(const float *m, const char *prefix);
void dump44d(const double *m, const char *prefix);

void copy44f(const float *src, float *dst);
void copy44d(const double *src, double *dst);

void identity33f(float *m1);
void identity33d(double *m);
void identity44f(float *m1);
void identity44d(double *m1);

bool is_identityf(int n, const float *m, float threshold=1.0E-6F);
bool is_allclosef(int nrow,
    const float *m1, int ncol1,
    const float *m2, int ncol2, float threshold=1.0E-6F);
bool is_diagonalf(int nrow,
    const float *m, int ncol=0, float threshold=1.0E-6F);
double determinant33f(const float *m, int ncol=3);

void glOrtho44f(float *m1, 
		GLfloat left, GLfloat right, 
		GLfloat bottom, GLfloat top,
		GLfloat nearVal, GLfloat farVal);
void glFrustum44f(float *m1,
		  GLfloat left, GLfloat right, 
		  GLfloat bottom, GLfloat top,
		  GLfloat nearVal, GLfloat farVal);

void copy44f44f(const float *src, float *dst);
void copy44d44f(const double *src, float *dst);
void copy44f44d(const float *src, double *dst);

void copy44d33f(const double *src, float *dst);
void copy44f33f(const float *src, float *dst);
void copy33f44d(const float *src, double *dst);
void copy33f44f(const float *src, float *dst);
void copy3d3f(const double *v1, float *v2);
void copy3f3d(const float *v1, double *v2);


/* in the following matrix multiplies and transformations:
   the last two matrices can be the same matrix! */

void transpose33f33f(const float *m1, float *m2);
void transpose33d33d(const double *m1, double *m2);
void transpose44f44f(const float *m1, float *m2);
void transpose44d44d(const double *m1, double *m2);

void transform33f3f(const float *m1, const float *m2, float *m3);
void transform33Tf3f(const float *m1, const float *m2, float *m3);  /* uses transpose */

void transform44f3f(const float *m1, const float *m2, float *m3);
void transform44f4f(const float *m1, const float *m2, float *m3);

void transform44d3f(const double *m1, const float *m2, float *m3);
void transform44d3d(const double *m1, const double *m2, double *m3);
void inverse_transformC44f3f(const float *m1, const float *m2, float *m3);
void inverse_transform44f3f(const float *m1, const float *m2, float *m3);
void inverse_transform44d3f(const double *m1, const float *m2, float *m3);
void inverse_transform44d3d(const double *m1, const double *m2, double *m3);
void transform44f3fas33f3f(const float *m1, const float *m2, float *m3);
void transform44d3fas33d3f(const double *m1, const float *m2, float *m3);

void multiply33f33f(const float *m1, const float *m2, float *m3);
void multiply33d33d(const double *m1, const double *m2, double *m3);


/* as matrix types */

void matrix_transform33f3f(const Matrix33f m1, const float *v1, float *v2);
void matrix_inverse_transform33f3f(const Matrix33f m1, const float *v1, float *v2);

void rotation_to_matrix33f(const float *axis, float angle, Matrix33f mat);
void matrix_multiply33f33f(Matrix33f m1, Matrix33f m2, Matrix33f m3);
void matrix_multiply33d33d(Matrix33d m1, Matrix33d m2, Matrix33d m3);


/* A 4x4 TTT matrix is really a 3x3 rotation matrix with two translation vectors:
   (1) a pre-translation stored in forth row, first three columns.
   (2) and a post-translation stored in forth column, first three rows.
   There are certain cases where this representation is more convenient.
 */
void combineTTT44f44f(const float *m1, const float *m2, float *m3);
void transformTTT44f3f(const float *m1, const float *m2, float *m3);
void transform_normalTTT44f3f(const float *m1, const float *m2, float *m3);
void initializeTTT44f(float *m);

void multiply44d44d44d(const double *left, const double *right, double *product);
void left_multiply44d44d(const double *left, double *right);
void right_multiply44d44d(double *left, const double *right);

void multiply44f44f44f(const float *left, const float *right, float *product);
void left_multiply44f44f(const float *left, float *right);
void right_multiply44f44f(float *left, const float *right);

void reorient44d(double *matrix);

void recondition33d(double *matrix);
void recondition44d(double *matrix);


/* invert a 4x4 homogenous that contains just rotation & tranlation
  (e.g. no scaling & fourth row is 0,0,0,1) */
void invert_special44d44d(const double *original, double *inv);
void invert_special44f44f(const float *original, float *inv);

void invert_rotation_only44d44d(const double *original, double *inv);

void convertTTTfR44d(const float *ttt, double *homo);
void convertTTTfR44f(const float *ttt, float *homo);
void convertR44dTTTf(const double *homo, float *ttt);
void convert44d44f(const double *dbl, float *flt);
void convert44f44d(const float *flt, double *dbl);

void get_rotation_about3f3fTTTf(float angle, const float *dir, const float *origin, float *ttt);


/* end revised matrix routines */


/*------------------------------------------------------------------------*/


/* OLD MATRIX STUFF below NEEDS REWORKING */

void rotation_matrix3f(float angle, float x, float y, float z, float *m);

typedef float *oMatrix5f[5];    /* PHASE THESE OUT! - THEY CAUSE PROBLEMS! */

typedef float *oMatrix3f[3];

typedef float *oMatrix3d[3];


/*void matcopy ( oMatrix5f to, oMatrix5f from );
  void mattran ( oMatrix5f nm, oMatrix5f om, int axis, float dist );
  void matrot ( oMatrix5f nm, oMatrix5f om, int axis, float angle );*/

void matrix_to_rotation(Matrix53f rot, float *axis, float *angle);
void rotation_to_matrix(Matrix53f rot, const float *axis, float angle);

void transform3d3f(const oMatrix3d m1, const float *v1, float *v2);
void transform33d3f(const Matrix33d m1, const float *v1, float *v2);
void transform5f3f(const oMatrix5f m, const float *v1, float *v2);

void mult4f(const float *vsrc, float val, float *vdest);
void mult3f(const float *vsrc, float val, float *vdest);
float max3(float val1, float val2, float val3);
float ave3(float val1, float val2, float val3);
float ave2(float val1, float val2);
void white4f(float *rgba, float value);
void add4f(const float *v1, const float *v2, float *sum);

int countchrs(const char *str, char ch);

float smooth(float x, float power);

void subdivide(int n, float *x, float *y);

//-------------------------------------------------------------------------
// Small inline functions
// (many of these were macros up to PyMOL 1.7.6)
//-------------------------------------------------------------------------

inline void set3f(float * v1, float x, float y, float z) {
  v1[0] = x;
  v1[1] = y;
  v1[2] = z;
}

template <typename T>
inline void zero3(T * v1) {
  v1[0] = 0;
  v1[1] = 0;
  v1[2] = 0;
}

#define zero3f zero3
#define zero3i zero3

inline void ones3f(float * v1) {
  v1[0] = 1.0F;
  v1[1] = 1.0F;
  v1[2] = 1.0F;
}

/**
 * Sets the values of the second vector to the additive inverses of each
 * respective value of the first vector, leaving the first vector unchanged.
 * @param v1 an array of three constant floats
 * @param v2 an array of three constant floats
 */
inline void invert3f3f(const float * v1, float * v2) {
  v2[0] = -v1[0];
  v2[1] = -v1[1];
  v2[2] = -v1[2];
}

inline void invert3f(float * v) {
  invert3f3f(v, v);
}

template <typename S, typename D>
void copyN(const S * src, D * dst, int N) {
  for (int i = 0; i < N; ++i)
    dst[i] = src[i];
}

template <typename S, typename D>
void copy2(const S * src, D * dst) {
  dst[0] = src[0];
  dst[1] = src[1];
}

template <typename S, typename D>
void copy3(const S * src, D * dst) {
  dst[0] = src[0];
  dst[1] = src[1];
  dst[2] = src[2];
}

template <typename S, typename D>
void copy4(const S * src, D * dst) {
  dst[0] = src[0];
  dst[1] = src[1];
  dst[2] = src[2];
  dst[3] = src[3];
}

#define copy2f copy2<float, float>
#define copy3f copy3
#define copy3d copy3<double, double>
#define copy4f copy4

namespace pymol
{
//! Dot product of two 3-dimensional vectors
template <typename T> T dot_product3(const T* v1, const T* v2)
{
  return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}

//! Square root of v, or 0 for negative v.
template <typename T> T sqrt1(T v)
{
  return (v > 0) ? sqrt(v) : 0;
}

//! v3 = v1 + v2
template <typename S1, typename S2, typename D>
void add3(const S1* v1, const S2* v2, D* v3)
{
  v3[0] = v1[0] + v2[0];
  v3[1] = v1[1] + v2[1];
  v3[2] = v1[2] + v2[2];
}

//! v3 = v1 - v2
template <typename S1, typename S2, typename D>
void subtract3(const S1* v1, const S2* v2, D* v3)
{
  v3[0] = v1[0] - v2[0];
  v3[1] = v1[1] - v2[1];
  v3[2] = v1[2] - v2[2];
}

//! Squared length of a 3-dimensional vector
template <typename T> T lengthsq3(const T* v1)
{
  return (v1[0] * v1[0]) + (v1[1] * v1[1]) + (v1[2] * v1[2]);
}

//! Length of a 3-dimensional vector
template <typename T> T length3(const T* v1)
{
  return sqrt1(lengthsq3(v1));
}

template <typename S, typename F, typename D>
void scale3(const S* v1, F v0, D* v2)
{
  v2[0] = v1[0] * v0;
  v2[1] = v1[1] * v0;
  v2[2] = v1[2] * v0;
}

/**
 * Scale v1 to length 1, unless it's a null pointer, then make it length 0.
 */
template <typename T> void normalize3(T* v1)
{
  auto const vlen = length3(v1);
  if (vlen > 1e-8) {
    scale3(v1, 1 / vlen, v1);
  } else {
    v1[0] = v1[1] = v1[2] = 0;
  }
}

/**
 * Cross product of two 3-dimensional vectors.
 * @param[out] cross Result buffer, must not overlap with v1 or v2
 */
template <typename T> void cross_product3(const T* v1, const T* v2, T* cross)
{
  assert(v1 != cross);
  assert(v2 != cross);
  cross[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
  cross[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
  cross[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
}

/**
 * Same as:
 *
 *     project3f(v1, unit, result);
 *     subtract3f(v1, result, result);
 */
template <typename T>
void remove_component3(const T *v1, const T *unit, T *result)
{
  auto dot = v1[0] * unit[0] + v1[1] * unit[1] + v1[2] * unit[2];
  result[0] = v1[0] - unit[0] * dot;
  result[1] = v1[1] - unit[1] * dot;
  result[2] = v1[2] - unit[2] * dot;
}

template <typename T = double, typename U>
T diffsq3(const U* const v1, const U* const v2)
{
  auto const dx = T(v1[0]) - v2[0];
  auto const dy = T(v1[1]) - v2[1];
  auto const dz = T(v1[2]) - v2[2];
  return dz * dz + dy * dy + dx * dx;
}

template <typename T = double, typename U>
T diff3(const U* const v1, const U* const v2)
{
  return sqrt1(diffsq3<T>(v1, v2));
}

void meanNx3(float const* data, size_t N, float* out);
} // namespace pymol

#define dot_product3f pymol::dot_product3<float>
#define dot_product3d pymol::dot_product3<double>
#define add3f pymol::add3<float, float, float>
#define add3d pymol::add3<double, double, double>
#define subtract3f pymol::subtract3<float, float, float>
#define lengthsq3f pymol::lengthsq3<float>
#define sqrt1f pymol::sqrt1<float>
#define sqrt1d pymol::sqrt1<double>
#define length3f pymol::length3<float>
#define length3d pymol::length3<double>
#define scale3f pymol::scale3<float, float, float>
#define scale3d pymol::scale3<double, double, double>
#define normalize3f pymol::normalize3<float>
#define normalize3d pymol::normalize3<double>
#define cross_product3f pymol::cross_product3<float>
#define cross_product3d pymol::cross_product3<double>
#define remove_component3f pymol::remove_component3<float>
#define diffsq3f pymol::diffsq3<float, float>
#define diff3f pymol::diff3<double, float>

inline void average3f(const float * v1, const float * v2, float * avg) {
  (avg)[0] = ((v1)[0]+(v2)[0])/2;
  (avg)[1] = ((v1)[1]+(v2)[1])/2;
  (avg)[2] = ((v1)[2]+(v2)[2])/2;
}

inline float length2f(const float * v1) {
  return sqrt1f((v1[0] * v1[0]) + (v1[1] * v1[1]));
}

inline bool within3f(const float *v1, const float *v2, float dist)
{
  float dx, dy, dz, dist2;
  dx = (float) fabs(v1[0] - v2[0]);
  dy = (float) fabs(v1[1] - v2[1]);
  if(dx > dist)
    return (0);
  dz = (float) fabs(v1[2] - v2[2]);
  dx = dx * dx;
  if(dy > dist)
    return (0);
  dy = dy * dy;
  dist2 = dist * dist;
  if(dz > dist)
    return (0);
  return (((dx + dy) + dz * dz) <= dist2);
}

inline bool within3fret(const float *v1, const float *v2, float cutoff,
                                         const float cutoff2, float *diff, float *dist)
{
  float dx, dy, dz, dist2;
  dx = (float) fabs((diff[0] = v1[0] - v2[0]));
  dy = (float) fabs((diff[1] = v1[1] - v2[1]));
  if(dx > cutoff)
    return 0;
  dz = (float) fabs((diff[2] = v1[2] - v2[2]));
  dx = dx * dx;
  if(dy > cutoff)
    return 0;
  dy = dy * dy;
  if(dz > cutoff)
    return 0;
  if((dist2 = ((dx + dy) + dz * dz)) > cutoff2)
    return 0;
  *dist = (float) sqrt1f(dist2);
  return 1;
}

/**
 * Get the shortest position vector for a plane with position v1 and normal vector v2.
 * @param v1 Point on plane
 * @param v2 Normal vector of plane
 * @param[out] proj Point on plane, collinear with v2
 * @return Length of proj
 */
inline float project3f(const float *v1, const float *v2, float *proj)
{
  float dot;

  dot = v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
  proj[0] = v2[0] * dot;
  proj[1] = v2[1] * dot;
  proj[2] = v2[2] * dot;

  return (dot);
}

#endif