1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
|
/**
* Atomic interactions
*
* (c) 2020 Schrodinger, Inc.
*/
#include "Interactions.h"
#include "AtomInfo.h"
#include "AtomIterators.h"
#include "DistSet.h"
#include "Feedback.h"
#include "Map.h"
#include "ObjectMolecule.h"
#include "RingFinder.h"
#include "Selector.h"
#include "SelectorDef.h"
#include "AtomIterators.h"
#include <glm/vec3.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <map>
#include <set>
#include <vector>
using AtomIndices = std::vector<int>;
using ObjRings = std::map<const ObjectMolecule*, std::set<AtomIndices>>;
using ObjAtoms = std::map<const ObjectMolecule*, AtomIndices>;
using Coords = std::vector<glm::vec3>;
namespace
{
/**
* Ring finder which exposes founds rings in the `m_rings` member variable.
*/
class RingSetFinder : public AbstractRingFinder
{
bool m_planar = false;
/// The collected rings
ObjRings m_rings;
/**
* @param planar If true, then only find planar rings
*/
RingSetFinder(bool planar = false, int maxringsize = 7)
: AbstractRingFinder(maxringsize)
, m_planar(planar)
{
}
protected:
void prepareObject(ObjectMolecule* obj) override
{
if (m_planar) {
ObjectMoleculeVerifyChemistry(obj, cSelectorUpdateTableAllStates);
}
}
bool atomIsExcluded(const AtomInfoType& atom) const override
{
return m_planar && atom.geom != cAtomInfoPlanar;
}
void onRingFound(
ObjectMolecule* obj, const int* indices, size_t size) override
{
AtomIndices ring(indices, indices + size);
std::sort(ring.begin(), ring.end());
m_rings[obj].insert(std::move(ring));
}
public:
friend ObjRings FindRings(PyMOLGlobals*, int, bool);
};
/**
* Find rings
*/
ObjRings FindRings(PyMOLGlobals* G, int sele, bool planar)
{
RingSetFinder ringfinder(planar);
for (SeleAtomIterator iter(G, sele); iter.next();) {
ringfinder.apply(iter.obj, iter.getAtm());
}
return std::move(ringfinder.m_rings);
}
/**
* Find cations
*/
ObjAtoms FindCations(PyMOLGlobals* G, int sele)
{
ObjectMolecule* obj = nullptr;
ObjAtoms cations;
for (SeleAtomIterator iter(G, sele); iter.next();) {
if (iter.obj != obj) {
obj = iter.obj;
ObjectMoleculeFixChemistry(obj, sele, sele, false);
ObjectMoleculeVerifyChemistry(obj, cSelectorUpdateTableAllStates);
}
if (iter.getAtomInfo()->formalCharge > 0) {
cations[obj].push_back(iter.getAtm());
}
}
return cations;
}
/**
* Simplified ring representation by center and normal.
*/
struct CNRing {
glm::vec3 center{};
glm::vec3 normal{};
CNRing(const Coords& ringcoords)
{
for (const auto& xyz : ringcoords) {
center += xyz;
}
if (!ringcoords.empty()) {
center /= ringcoords.size();
}
if (ringcoords.size() >= 3) {
auto v01 = ringcoords[1] - ringcoords[0];
auto v12 = ringcoords[2] - ringcoords[1];
normal = glm::normalize(glm::cross(v01, v12));
}
}
};
/**
* Helper function to convert atom indices to simplified ring structures.
*/
std::vector<CNRing> cnrings_from_objrings(const ObjRings& objrings, int state)
{
std::vector<CNRing> cnrings;
for (auto& objitem : objrings) {
const auto* obj = objitem.first;
const auto* cs = obj->getCoordSet(state);
if (!cs) {
continue;
}
for (auto& ring : objitem.second) {
Coords ringcoords;
for (int atm : ring) {
auto idx = cs->atmToIdx(atm);
if (idx >= 0) {
const float* v = cs->coordPtr(idx);
ringcoords.emplace_back(v[0], v[1], v[2]);
}
}
cnrings.emplace_back(ringcoords);
}
}
return cnrings;
}
/**
* Helper function to to convert atom indices to coordinates.
*/
Coords coords_from_objatoms(const ObjAtoms& objatoms, int state)
{
Coords coords;
for (auto& objitem : objatoms) {
const auto* obj = objitem.first;
const auto* cs = obj->getCoordSet(state);
if (!cs) {
continue;
}
for (int atm : objitem.second) {
auto idx = cs->atmToIdx(atm);
if (idx >= 0) {
const float* v = cs->coordPtr(idx);
coords.emplace_back(v[0], v[1], v[2]);
}
}
}
return coords;
}
/**
* Helper function to convert to flat memory layout
*/
template <typename Range>
std::vector<float> flatten_ring_centers(const Range& rings)
{
std::vector<float> flat;
for (const auto& ring : rings) {
flat.push_back(ring.center[0]);
flat.push_back(ring.center[1]);
flat.push_back(ring.center[2]);
}
return flat;
}
/**
* Smaller angle between two vectors
*/
float angle_acute_degrees(glm::vec3 const& v1, glm::vec3 const& v2)
{
return glm::degrees(std::acos(
std::abs(glm::dot(v1, v2)) / (glm::length(v1) * glm::length(v2))));
}
void DistSetAddDistance(DistSet* ds, //
const float* v1, const float* v2, //
int state1, int state2, //
AtomInfoType* ai1 = nullptr, AtomInfoType* ai2 = nullptr)
{
auto G = ds->G;
ds->MeasureInfo.emplace_front();
auto& info = ds->MeasureInfo.front();
info.offset = ds->NIndex;
info.id[0] = ai1 ? AtomInfoCheckUniqueID(G, ai1) : 0;
info.id[1] = ai2 ? AtomInfoCheckUniqueID(G, ai2) : 0;
info.state[0] = state1;
info.state[1] = state2;
info.measureType = cRepDash;
ds->Coord.reserve((ds->NIndex + 2) * 3);
for (size_t i = 0; i != 3; ++i) {
ds->Coord[(ds->NIndex + 0) * 3 + i] = v1[i];
ds->Coord[(ds->NIndex + 1) * 3 + i] = v2[i];
}
ds->NIndex += 2;
}
} // namespace
namespace pymol
{
/**
* Find pi-pi and/or pi-cation interactions.
*
* @param ds Measurement state to update, or nullptr to create a new one.
* @param sele1 Selection index
* @param state1 Object state
* @param sele2 Selection index
* @param state2 Object state
* @param pipi If true, then search for pi-pi interactions
* @param picat If "both" then search for pi-cation interactions in both
* directions. If "forward" then search for rings in selection 1 and for cations
* in selection 2.
*/
DistSet* FindPiInteractions(PyMOLGlobals* G,
DistSet* ds, //
int sele1, int state1, //
int sele2, int state2, //
bool pipi, //
InteractionDir picat)
{
// These constants are borrowed from mmshare/include/structureinteraction.h
constexpr auto RING_ALIGNMENT_MAX_ANGLE = 40.0;
constexpr auto DEFAULT_PI_CATION_MAXIMUM_DISTANCE = 6.6;
constexpr auto DEFAULT_PI_CATION_MAXIMUM_ANGLE = 30.0;
constexpr auto PIPI_FACE_TO_FACE_MAXIMUM_DISTANCE = 4.4;
constexpr auto PIPI_FACE_TO_FACE_MAXIMUM_ANGLE = 30.0;
constexpr auto PIPI_EDGE_TO_FACE_MAXIMUM_DISTANCE = 5.5;
constexpr auto PIPI_EDGE_TO_FACE_MINIMUM_ANGLE = 60.0;
const bool sele_is_same = sele1 == sele2 && state1 == state2;
auto rings1 = cnrings_from_objrings(FindRings(G, sele1, true), state1);
// data structure for fast neighbor lookup
std::unique_ptr<MapType> centers1map(
MapNew(G, -DEFAULT_PI_CATION_MAXIMUM_DISTANCE,
flatten_ring_centers(rings1).data(), rings1.size(), nullptr));
if (!ds) {
ds = DistSetNew(G);
}
if (pipi) {
auto rings2 =
sele_is_same ? rings1
: cnrings_from_objrings(FindRings(G, sele2, true), state2);
int i = -1;
for (const auto& ring2 : rings2) {
++i;
for (int j : MapEIter(*centers1map, glm::value_ptr(ring2.center))) {
if (sele_is_same && j >= i) {
continue;
}
auto const& ring1 = rings1[j];
auto const v = ring2.center - ring1.center;
auto const distance = glm::length(v);
if (distance < 1e-2 || //
distance > PIPI_EDGE_TO_FACE_MAXIMUM_DISTANCE) {
continue;
}
auto const normal_to_v_angle_i = angle_acute_degrees(ring2.normal, v);
auto const normal_to_v_angle_j = angle_acute_degrees(ring1.normal, v);
if (normal_to_v_angle_i > RING_ALIGNMENT_MAX_ANGLE &&
normal_to_v_angle_j > RING_ALIGNMENT_MAX_ANGLE) {
// collinear
continue;
}
auto const angle = angle_acute_degrees(ring2.normal, ring1.normal);
if (angle < PIPI_FACE_TO_FACE_MAXIMUM_ANGLE &&
distance < PIPI_FACE_TO_FACE_MAXIMUM_DISTANCE) {
PRINTFB(G, FB_DistSet, FB_Blather)
"face-to-face %d %d\n", i, j ENDFB(G);
} else if (angle > PIPI_EDGE_TO_FACE_MINIMUM_ANGLE) {
PRINTFB(G, FB_DistSet, FB_Blather)
"edge-to-face %d %d\n", i, j ENDFB(G);
} else {
continue;
}
DistSetAddDistance(ds,
glm::value_ptr(ring1.center), //
glm::value_ptr(ring2.center), state1, state2);
}
}
}
if (picat != cInteractionNone) {
auto cations2 = coords_from_objatoms(FindCations(G, sele2), state2);
int i = -1;
for (const auto& cation2 : cations2) {
++i;
for (int j : MapEIter(*centers1map, glm::value_ptr(cation2))) {
auto const v = cation2 - rings1[j].center;
auto const distance = glm::length(v);
if (distance > DEFAULT_PI_CATION_MAXIMUM_DISTANCE) {
continue;
}
if (angle_acute_degrees(rings1[j].normal, v) >
DEFAULT_PI_CATION_MAXIMUM_ANGLE) {
// collinear
continue;
}
DistSetAddDistance(ds,
glm::value_ptr(rings1[j].center), //
glm::value_ptr(cation2), state1, state2);
PRINTFB(G, FB_DistSet, FB_Blather)
"pi-cat %d %d\n", i, j ENDFB(G);
}
}
// vice-versa
if (!sele_is_same && picat == cInteractionBoth) {
FindPiInteractions(G, ds, sele2, state2, sele1, state1, cInteractionNone,
cInteractionForward);
}
}
return ds;
}
/**
* Test halogen-bond criteria when halogen is an acceptor.
* Halogen acceptor bonds have relations between the donor H atom (H) and the
* atom bonded to it (D), the halogen acceptor (X) and the atom bonded to it
* (B), D–H...X–B. The following must be true for a valid acceptor halogen bond:
*
* The H...X distance must be less than a specified maximum distance.
* The D–H...X angle must be greater than a specified minimum value.
* The H...X–B angle must be greater than a specified minimum value.
* The H...X–B angle must be less than a specified maximum value.
*
* @param v_x_h - X-H vector
* @param v_d_h - D-H vector
* @param v_x_b - X-B vector
* @param hbc - halogen-bond criteria
*
* @return true - if it meets a halogen-bond interaction criteria
* @return false - if it does not meet a halogen-bond interaction criteria
*/
static bool TestHalogenBondAcceptor(
float* v_x_h, float* v_d_h, float* v_x_b, HalogenBondCriteria* hbc)
{
float n_v_x_h[3];
normalize23f(v_x_h, n_v_x_h);
float n_v_d_h[3];
normalize23f(v_d_h, n_v_d_h);
float n_v_x_b[3];
normalize23f(v_x_b, n_v_x_b);
float dp = dot_product3f(n_v_x_h, n_v_d_h);
float angle = 180.0 * acos(dp) / PI;
if (angle < hbc->m_as_acceptor_min_donor_angle) {
return false;
}
dp = dot_product3f(n_v_x_h, n_v_x_b);
angle = 180.0 * acos(dp) / PI;
if (angle < hbc->m_as_acceptor_min_acceptor_angle ||
angle > hbc->m_as_acceptor_max_acceptor_angle) {
return false;
}
float dist = length3f(v_x_h);
return dist <= hbc->m_distance;
}
/**
* Test halogen-bond criteria when halogen is a donor.
* Halogen bonds in which the halogen acts as donor are defined in a similar way
* to hydrogen bonds, by relations between four atoms: the donor halogen atom
* (X), the donor atom (D) bonded to it, the acceptor atom (A), and another
* neighbor atom (B) bonded to A, represented as D–X...A–B. The following must
* be true for a valid donor halogen bond:
*
* The X...A distance must be less than a specified maximum distance.
* The D–X...A angle must be greater than a specified minimum value.
* The X...A–B angle must be greater than a specified minimum value.
*
* @param v_a_x - A-X vector
* @param v_d_x - D-X vector
* @param v_a_b - A-B vector
* @param hbc - halogen-bond criteria
*
* @return true - if it meets a halogen-bond interaction criteria
* @return false - if it does not meet a halogen-bond interaction criteria
*/
static bool TestHalogenBondDonor(
float* v_a_x, float* v_d_x, float* v_a_b, HalogenBondCriteria* hbc)
{
float n_v_a_x[3];
normalize23f(v_a_x, n_v_a_x);
float n_v_d_x[3];
normalize23f(v_d_x, n_v_d_x);
float n_v_a_b[3];
normalize23f(v_a_b, n_v_a_b);
float angle = dot_product3f(n_v_a_x, n_v_d_x);
angle = 180.0 * acos(angle) / PI;
if (angle < hbc->m_as_donor_min_donor_angle) {
return false;
}
angle = dot_product3f(n_v_a_x, n_v_a_b);
angle = 180.0 * acos(angle) / PI;
if (angle < hbc->m_as_donor_min_acceptor_angle) {
return false;
}
float dist = length3f(v_a_x);
return dist <= hbc->m_distance;
}
/**
* Check halogen-bond as a donor
*
* @param don_obj - donor object molecule
* @param don_atom - donor atom id
* @param don_state - donor state index
* @param acc_obj - acceptor object molecule
* @param acc_atom - acceptor atom id
* @param acc_state - acceptor state index
* @param hbc - halogen-bond criteria
*
* @return true - if it meets a halogen-bond interaction criteria
* @return false - if it does not meet a halogen-bond interaction criteria
*/
static bool CheckHalogenBondAsDonor(ObjectMolecule* don_obj, int don_atom,
int don_state, ObjectMolecule* acc_obj, int acc_atom, int acc_state,
HalogenBondCriteria* hbc)
{
bool result = false;
const CoordSet* csD = nullptr;
const CoordSet* csA = nullptr;
// first, check for existence of coordinate sets
if (don_state >= 0 && don_state < don_obj->NCSet) {
csD = don_obj->CSet[don_state];
}
if (acc_state >= 0 && acc_state < acc_obj->NCSet) {
csA = acc_obj->CSet[acc_state];
}
if (csD == nullptr) {
return false;
}
if (csA == nullptr) {
return false;
}
if (don_atom >= don_obj->NAtom) {
return false;
}
if (acc_atom >= acc_obj->NAtom) {
return false;
}
AtomInfoType* don_atom_info = don_obj->AtomInfo + don_atom;
if (don_atom_info->protons == cAN_Cl || don_atom_info->protons == cAN_Br ||
don_atom_info->protons == cAN_I) {
// now check for coordinates of these actual atoms
auto idxD = csD->atmToIdx(don_atom);
auto idxA = csA->atmToIdx(acc_atom);
if (idxA >= 0 && idxD >= 0) {
const float* vDon = csD->coordPtr(idxD);
const float* vAcc = csA->coordPtr(idxA);
float v_d[3];
if (ObjectMoleculeGetNeighborVector(don_obj, don_atom, don_state, v_d)) {
float v_b[3];
if (ObjectMoleculeGetNeighborVector(
acc_obj, acc_atom, acc_state, v_b)) {
float v_d_x[3];
subtract3f(v_d, vDon, v_d_x);
float v_a_b[3];
subtract3f(vAcc, v_b, v_a_b);
float v_a_x[3];
subtract3f(vAcc, vDon, v_a_x);
int result = TestHalogenBondDonor(v_a_x, v_d_x, v_a_b, hbc);
if (result) {
return true;
}
}
}
}
}
return result;
}
/**
* Check halogen-bond as acceptor
*
* @param don_obj - donor object molecule
* @param don_atom - donor atom id
* @param don_state - donor state index
* @param acc_obj - acceptor object molecule
* @param acc_atom - acceptor atom id
* @param acc_state - acceptor state index
* @param hbc - halogen-bond criteria
*
* @return true - if it meets a halogen-bond interaction criteria
* @return false - if it does not meet a halogen-bond interaction criteria
*/
static bool CheckHalogenBondAsAcceptor(ObjectMolecule* don_obj, int don_atom,
int don_state, ObjectMolecule* acc_obj, int acc_atom, int acc_state,
HalogenBondCriteria* hbc)
{
bool result = false;
const CoordSet* csD = nullptr;
const CoordSet* csA = nullptr;
// first, check for existence of coordinate sets
if (don_state >= 0 && don_state < don_obj->NCSet) {
csD = don_obj->CSet[don_state];
}
if (acc_state >= 0 && acc_state < acc_obj->NCSet) {
csA = acc_obj->CSet[acc_state];
}
if (csD == nullptr) {
return false;
}
if (csA == nullptr) {
return false;
}
if (don_atom >= don_obj->NAtom) {
return false;
}
if (acc_atom >= acc_obj->NAtom) {
return false;
}
AtomInfoType* don_atom_info = don_obj->AtomInfo + don_atom;
AtomInfoType* acc_atom_info = acc_obj->AtomInfo + acc_atom;
if ((don_atom_info->protons == cAN_H || don_atom_info->protons == cAN_N ||
don_atom_info->protons == cAN_O || don_atom_info->protons == cAN_S) &&
(acc_atom_info->protons == cAN_Cl || acc_atom_info->protons == cAN_Br ||
acc_atom_info->protons == cAN_I)) {
auto idxD = csD->atmToIdx(don_atom);
auto idxA = csA->atmToIdx(acc_atom);
if ((idxA >= 0) && (idxD >= 0)) {
const float* vDon = csD->coordPtr(idxD);
const float* vAcc = csA->coordPtr(idxA);
float v_d[3];
if (ObjectMoleculeGetNeighborVector(don_obj, don_atom, don_state, v_d)) {
float v_b[3];
if (ObjectMoleculeGetNeighborVector(
acc_obj, acc_atom, acc_state, v_b)) {
float v_d_h[3];
subtract3f(v_d, vDon, v_d_h);
float v_x_b[3];
subtract3f(vAcc, v_b, v_x_b);
float v_x_h[3];
subtract3f(vAcc, vDon, v_x_h);
bool result = TestHalogenBondAcceptor(v_x_h, v_d_h, v_x_b, hbc);
if (result) {
return true;
}
}
}
}
}
return result;
}
SaltBridgeCriteria::SaltBridgeCriteria(PyMOLGlobals* G)
{
m_distance =
SettingGet<float>(G, nullptr, nullptr, cSetting_salt_bridge_distance);
}
HalogenBondCriteria::HalogenBondCriteria(PyMOLGlobals* G)
{
m_distance =
SettingGet<float>(G, nullptr, nullptr, cSetting_halogen_bond_distance);
m_as_donor_min_donor_angle = SettingGet<float>(
G, nullptr, nullptr, cSetting_halogen_bond_as_donor_min_donor_angle);
m_as_donor_min_acceptor_angle = SettingGet<float>(
G, nullptr, nullptr, cSetting_halogen_bond_as_donor_min_acceptor_angle);
m_as_acceptor_min_donor_angle = SettingGet<float>(
G, nullptr, nullptr, cSetting_halogen_bond_as_acceptor_min_donor_angle);
m_as_acceptor_min_acceptor_angle = SettingGet<float>(G, nullptr, nullptr,
cSetting_halogen_bond_as_acceptor_min_acceptor_angle);
m_as_acceptor_max_acceptor_angle = SettingGet<float>(G, nullptr, nullptr,
cSetting_halogen_bond_as_acceptor_max_acceptor_angle);
}
/**
* Prepare neighbor tables
*
* @param sele1 - selections index
* @param state1 - state index
* @param sele2 - selection index
* @param state2 - state index
*
* @return maximum number of atoms
*/
int PrepareNeighborTables(
PyMOLGlobals* G, int sele1, int state1, int sele2, int state2)
{
CSelector* I = G->Selector;
// update states: if the two are the same, update that one state, else update
// all states
if (state1 < 0 || state2 < 0 || state1 != state2) {
SelectorUpdateTable(G, cSelectorUpdateTableAllStates, -1);
} else {
SelectorUpdateTable(G, state1, -1);
}
// find and prepare (neighbortables) in any participating Molecular objects
// fill in all the neighbor tables
int max_n_atom = I->Table.size();
ObjectMolecule* lastObj = nullptr;
for (int a = cNDummyAtoms; a < I->Table.size(); a++) {
// foreach atom in the session, get its identifier and ObjectMolecule to
// which it belongs
int at = I->Table[a].atom; // grab the atom ID from the Selectors->Table
ObjectMolecule* obj =
I->Obj[I->Table[a].model]; // -- JV -- quick way to get an object from
// an atom
int s = obj->AtomInfo[at]
.selEntry; // grab the selection entry# from this Atoms Info
if (obj != lastObj) {
if (max_n_atom < obj->NAtom) {
max_n_atom = obj->NAtom;
}
// if the current atom is in sele1 or sele2 then update it's object's
// neighbor table
if (SelectorIsMember(G, s, sele1) || SelectorIsMember(G, s, sele2)) {
// if hbonds (so, more than just distance)
ObjectMoleculeVerifyChemistry(obj, -1);
lastObj = obj;
}
}
}
return max_n_atom;
}
/**
* Insert distance info into DistSet and copy atom's coordinates
*
* @param ds - distance set
* @param state1 - state index
* @param state2 - state index
* @param ai1 - atom info
* @param ai2 - atom info
* @param atom1_vv - atom coordinates
* @param atom2_vv - atom coordinates
* @param numVerts - number of vertices
*/
void InsertDistanceInfo(PyMOLGlobals* G, DistSet* ds, int state1, int state2,
AtomInfoType* ai1, AtomInfoType* ai2, float* atom1_vv, float* atom2_vv,
int numVerts)
{
// Insert DistInfo records for updating distances
// Init/Add the elem to the DistInfo list
ds->MeasureInfo.emplace_front();
auto* atom1Info = &ds->MeasureInfo.front();
// TH
atom1Info->id[0] = AtomInfoCheckUniqueID(G, ai1);
atom1Info->id[1] = AtomInfoCheckUniqueID(G, ai2);
atom1Info->offset = numVerts; // offset into this DSet's Coord
atom1Info->state[0] = state1; // state1 of sel1
atom1Info->state[1] = state2;
atom1Info->measureType = cRepDash; // DISTANCE-dash
auto& coords = ds->Coord;
// see if coords has room at another 6 floats
VLACheck(coords, float, (numVerts * 3) + 6);
float* vv0 = coords + (numVerts * 3);
if (atom1_vv != nullptr && atom2_vv != nullptr) {
const size_t count_to_copy = 3;
std::copy_n(atom1_vv, count_to_copy, vv0);
vv0 += count_to_copy;
atom1_vv += count_to_copy;
std::copy_n(atom2_vv, count_to_copy, vv0);
vv0 += count_to_copy;
atom2_vv += count_to_copy;
}
}
/**
* Create coverage vector
*
* @param sele1 - selection index
* @param sele2 - selection index
* @return vector of booleans which determines if a given atom appears in sele1
* and sele2
*/
static std::vector<bool> CreateCoverage(PyMOLGlobals* G, int sele1, int sele2)
{
CSelector* I = G->Selector;
std::vector<bool> result(I->Table.size());
// coverage determines if a given atom appears in sele1 and sele2
for (SelectorAtomIterator iter(I); iter.next();) {
int s = iter.getAtomInfo()->selEntry;
if (SelectorIsMember(G, s, sele1) && SelectorIsMember(G, s, sele2)) {
result[iter.a] = true;
}
}
return result;
}
DistSet* FindHalogenBondInteractions(PyMOLGlobals* G, DistSet* ds, int sele1,
int state1, int sele2, int state2, float cutoff, float* result)
{
CSelector* I = G->Selector;
int numVerts = 0;
*result = 0.0f;
// if the dist set exists, get info from it, otherwise get a new one
if (ds == nullptr) {
ds = DistSetNew(G);
} else {
numVerts = ds->NIndex; // number of vertices
}
auto& coords = ds->Coord;
coords.reserve(10);
int max_n_atom = PrepareNeighborTables(G, sele1, state1, sele2, state2);
HalogenBondCriteria halogenbcRec(G);
cutoff = halogenbcRec.m_distance;
if (cutoff < 0.0f) {
const float max_cutoff = 1000.0f;
cutoff = max_cutoff;
}
// coverage determines if a given atom appears in sel1 and sel2
std::vector<bool> coverage = CreateCoverage(G, sele1, sele2);
// this creates an interleaved list of ints for mapping ids to states within a
// given neighborhood
std::vector<int> interstate_vector =
SelectorGetInterstateVector(G, sele1, state1, sele2, state2, cutoff);
int cnt = interstate_vector.size() / 2;
std::vector<int> zero(max_n_atom);
std::vector<int> scratch(max_n_atom);
float dist_sum = 0.0f;
int dist_cnt = 0;
// for each state
for (int a = 0; a < cnt; a++) {
// get the interstate atom identifier for the two atoms to distance
int a1 = interstate_vector[a * 2];
int a2 = interstate_vector[a * 2 + 1];
// check their coverage to avoid duplicates
if (a1 < a2 || (a1 != a2 && !(coverage[a1] && coverage[a2])) ||
(state1 != state2)) {
// eliminate reverse duplicates
// get the object-local atom ID
int at1 = I->Table[a1].atom;
int at2 = I->Table[a2].atom;
if (sele1 == sele2 && at1 > at2) {
continue;
}
// get the object for this global atom ID
ObjectMolecule* obj1 = I->Obj[I->Table[a1].model];
ObjectMolecule* obj2 = I->Obj[I->Table[a2].model];
// the states are valid for these two atoms
if (state1 < obj1->NCSet && state2 < obj2->NCSet) {
// get the coordinate sets for both atoms
CoordSet* cs1 = obj1->CSet[state1];
CoordSet* cs2 = obj2->CSet[state2];
if (cs1 != nullptr && cs2 != nullptr) {
// for bonding
float* don_vv = nullptr;
float* acc_vv = nullptr;
// grab the appropriate atom information for this object-local atom
AtomInfoType* ai1 = obj1->AtomInfo + at1;
AtomInfoType* ai2 = obj2->AtomInfo + at2;
int idx1 = cs1->atmToIdx(at1);
int idx2 = cs2->atmToIdx(at2);
if (idx1 >= 0 && idx2 >= 0) {
// actual distance calculation from ptA to ptB
float dist =
(float) diff3f(cs1->coordPtr(idx1), cs2->coordPtr(idx2));
// if we pass the bonding cutoff
if (dist < cutoff) {
bool a_keeper = false;
if (ai1->hb_donor) {
a_keeper = CheckHalogenBondAsAcceptor(
obj1, at1, state1, obj2, at2, state2, &halogenbcRec);
if (a_keeper) {
don_vv = cs1->coordPtr(idx1);
acc_vv = cs2->coordPtr(idx2);
}
} else if (ai2->hb_donor) {
a_keeper = CheckHalogenBondAsAcceptor(
obj2, at2, state2, obj1, at1, state1, &halogenbcRec);
if (a_keeper) {
don_vv = cs2->coordPtr(idx2);
acc_vv = cs1->coordPtr(idx1);
}
}
if (a_keeper == false) {
if (ai2->hb_acceptor) {
a_keeper = CheckHalogenBondAsDonor(
obj1, at1, state1, obj2, at2, state2, &halogenbcRec);
if (a_keeper) {
don_vv = cs1->coordPtr(idx1);
acc_vv = cs2->coordPtr(idx2);
}
} else if (ai1->hb_acceptor) {
a_keeper = CheckHalogenBondAsDonor(
obj2, at2, state2, obj1, at1, state1, &halogenbcRec);
if (a_keeper) {
don_vv = cs2->coordPtr(idx2);
acc_vv = cs1->coordPtr(idx1);
}
}
}
if (a_keeper) {
InsertDistanceInfo(
G, ds, state1, state2, ai1, ai2, don_vv, acc_vv, numVerts);
dist_cnt++;
dist_sum += dist;
numVerts += 2;
}
}
}
}
}
}
}
if (dist_cnt > 0) {
(*result) = dist_sum / dist_cnt;
}
if (coords) {
coords.resize((numVerts + 1) * 3);
}
ds->NIndex = numVerts;
return ds;
}
DistSet* FindSaltBridgeInteractions(PyMOLGlobals* G, DistSet* ds, int sele1,
int state1, int sele2, int state2, float cutoff, float* result)
{
CSelector* I = G->Selector;
int numVerts = 0;
*result = 0.0f;
// if the dist set exists, get info from it, otherwise get a new one
if (ds == nullptr) {
ds = DistSetNew(G);
} else {
numVerts = ds->NIndex; // number of vertices
}
auto& coords = ds->Coord;
coords.reserve(10);
int max_n_atom = PrepareNeighborTables(G, sele1, state1, sele2, state2);
SaltBridgeCriteria saltbcRec(G);
cutoff = saltbcRec.m_distance;
if (cutoff < 0.0f) {
const float max_cutoff = 1000.0f;
cutoff = max_cutoff;
}
// coverage determines if a given atom appears in sel1 and sel2
std::vector<bool> coverage = CreateCoverage(G, sele1, sele2);
// this creates an interleaved list of ints for mapping ids to states within a
// given neighborhood
std::vector<int> interstate_vector =
SelectorGetInterstateVector(G, sele1, state1, sele2, state2, cutoff);
int cnt = interstate_vector.size() / 2;
std::vector<int> zero(max_n_atom);
std::vector<int> scratch(max_n_atom);
float dist_sum = 0.0f;
int dist_cnt = 0;
// for each state
for (int a = 0; a < cnt; a++) {
// get the interstate atom identifier for the two atoms to distance
int a1 = interstate_vector[a * 2];
int a2 = interstate_vector[a * 2 + 1];
// check their coverage to avoid duplicates
if (a1 < a2 || (a1 != a2 && !(coverage[a1] && coverage[a2])) ||
(state1 != state2)) {
// eliminate reverse duplicates
// get the object-local atom ID
int at1 = I->Table[a1].atom;
int at2 = I->Table[a2].atom;
if (sele1 == sele2 && at1 > at2) {
continue;
}
// get the object for this global atom ID
ObjectMolecule* obj1 = I->Obj[I->Table[a1].model];
ObjectMolecule* obj2 = I->Obj[I->Table[a2].model];
// the states are valid for these two atoms
if (state1 < obj1->NCSet && state2 < obj2->NCSet) {
// get the coordinate sets for both atoms
CoordSet* cs1 = obj1->CSet[state1];
CoordSet* cs2 = obj2->CSet[state2];
if (cs1 != nullptr && cs2 != nullptr) {
// for bonding
float* anion_vv = nullptr;
float* cation_vv = nullptr;
// grab the appropriate atom information for this object-local atom
AtomInfoType* ai1 = obj1->AtomInfo + at1;
AtomInfoType* ai2 = obj2->AtomInfo + at2;
int atom1_charge = ai1->formalCharge;
int atom2_charge = ai2->formalCharge;
if (atom1_charge * atom2_charge >= 0) {
continue;
}
if (ai1->isHydrogen() || ai2->isHydrogen()) {
continue;
}
int idx1 = cs1->atmToIdx(at1);
int idx2 = cs2->atmToIdx(at2);
if (idx1 >= 0 && idx2 >= 0) {
// actual distance calculation from ptA to ptB
float dist =
(float) diff3f(cs1->coordPtr(idx1), cs2->coordPtr(idx2));
// if we pass the bonding cutoff
if (dist < cutoff) {
if (atom1_charge < 0) {
anion_vv = cs1->coordPtr(idx1);
cation_vv = cs2->coordPtr(idx2);
} else {
anion_vv = cs2->coordPtr(idx2);
cation_vv = cs1->coordPtr(idx1);
}
InsertDistanceInfo(G, ds, state1, state2, ai1, ai2, anion_vv,
cation_vv, numVerts);
dist_cnt++;
dist_sum += dist;
numVerts += 2;
}
}
}
}
}
}
if (dist_cnt > 0) {
(*result) = dist_sum / dist_cnt;
}
if (coords) {
coords.resize((numVerts + 1) * 3);
}
ds->NIndex = numVerts;
return ds;
}
} // namespace pymol
|