File: assign.py

package info (click to toggle)
pymol 3.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 74,084 kB
  • sloc: cpp: 482,660; python: 89,328; ansic: 29,512; javascript: 6,792; sh: 84; makefile: 25
file content (209 lines) | stat: -rw-r--r-- 8,985 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#A* -------------------------------------------------------------------
#B* This file contains source code for the PyMOL computer program
#C* copyright 1998-2000 by Warren Lyford Delano of DeLano Scientific.
#D* -------------------------------------------------------------------
#E* It is unlawful to modify or remove this copyright notice.
#F* -------------------------------------------------------------------
#G* Please see the accompanying LICENSE file for further information.
#H* -------------------------------------------------------------------
#I* Additional authors of this source file include:
#-*
#-*
#-*
#Z* -------------------------------------------------------------------

tmp_sele1 = "assign_tmp1"
tmp_sele2 = "assign_tmp2"

from chempy import champ
from chempy.champ import Champ
from pymol import cmd

def missing_c_termini(selection="(all)",quiet=0,_self=cmd):
    cmd=_self
    # assumes that hydogens are not present!

    sele_list = []
    ch=Champ()
    model = cmd.get_model(selection)
    model_pat = ch.insert_model(model)
    assn_pat = ch.insert_pattern_string("[N+0+1]C[C;D2]<0>(=O)")
    ch.pattern_clear_tags(model_pat)
    if ch.match_1v1_n(assn_pat,model_pat,10000,2)>0:
        result = ch.pattern_get_ext_indices_with_tags(model_pat)
        for atom_tag in result[0]: # just iterate over atom tags
            if len(atom_tag[1])==1: # one and only one match
                if atom_tag[1][0]==0:
                    sele_list.append(atom_tag[0])
    cmd.select_list(tmp_sele1,selection,sele_list, mode='index')
    while cmd.pop(tmp_sele2,tmp_sele1)>0: # complete the carboxy terminus
        cmd.edit(tmp_sele2)
        cmd.attach("O",1,1,"OXT",quiet=1)
        cmd.unpick()
    cmd.delete(tmp_sele1)


def formal_charges(selection="(all)",quiet=0,_self=cmd):
    cmd=_self
    result = 1
    # assumes that hydogens are not present!

    # first, set all formal charges to zero

    cmd.alter(selection,"formal_charge=0")

    # next, flag all atoms so that we'll be able to detect what we miss

    cmd.flag(23,selection,'set')

    # get the residue dictionary for formal charges

    if not hasattr(champ,'formal_charge_dict'):
        from chempy.champ.formal_charges import formal_charge_dict
        champ.formal_charge_dict = formal_charge_dict

    # iterate through the residue dictionary matching each residue based on chemistry
    # and generating the expressions for reassigning formal charges

    alter_list = []
    for resn in champ.formal_charge_dict.keys():
        if cmd.select(tmp_sele1,"(%s) and resn %s"%(selection,resn))>0:
            entry = champ.formal_charge_dict[resn]
            for rule in entry:
                model = cmd.get_model(tmp_sele1)
                ch = Champ()
                model_pat = ch.insert_model(model)
                assn_pat = ch.insert_pattern_string(rule[0])
                ch.pattern_clear_tags(model_pat)
                if ch.match_1v1_n(assn_pat,model_pat,10000,2)>0:
                    result = ch.pattern_get_ext_indices_with_tags(model_pat)
                    for atom_tag in result[0]: # just iterate over atom tags
                        if len(atom_tag[1])==1: # one and only one match
                            tag = atom_tag[1][0]
                            formal_charge = rule[1][tag]
                            # the following expression both changes the formal charge and resets flag 23
                            alter_list.append([atom_tag[0],
                                                     "formal_charge=%d;flags=flags&-8388609"%formal_charge])

    if 1: # n-terminal amine
        # non-proline
        ch=Champ()
        model = cmd.get_model(selection)
        model_pat = ch.insert_model(model)
        assn_pat = ch.insert_pattern_string("[N;D1]<0>CC(=O)")
        ch.pattern_clear_tags(model_pat)
        if ch.match_1v1_n(assn_pat,model_pat,10000,2)>0:
                result = ch.pattern_get_ext_indices_with_tags(model_pat)
                for atom_tag in result[0]: # just iterate over atom tags
                    if len(atom_tag[1])==1: # one and only one match
                        if atom_tag[1][0]==0:
                            # the following expression both changes the formal charge and resets flag 23
                            alter_list.append([atom_tag[0],
                                                     "formal_charge=1;flags=flags&-8388609"])
        # proline residues
        ch=Champ()
        model = cmd.get_model(selection)
        model_pat = ch.insert_model(model)
        assn_pat = ch.insert_pattern_string("C1CC[N;D2]<0>C1C(=O)")
        ch.pattern_clear_tags(model_pat)
        if ch.match_1v1_n(assn_pat,model_pat,10000,2)>0:
                result = ch.pattern_get_ext_indices_with_tags(model_pat)
                for atom_tag in result[0]: # just iterate over atom tags
                    if len(atom_tag[1])==1: # one and only one match
                        if atom_tag[1][0]==0:
                            # the following expression both changes the formal charge and resets flag 23
                            alter_list.append([atom_tag[0],
                                                     "formal_charge=1;flags=flags&-8388609"])

    if 1: # c-terminal acid
        ch=Champ()
        model = cmd.get_model(selection)
        model_pat = ch.insert_model(model)
        assn_pat = ch.insert_pattern_string("NCC(=O<0>)[O;D1]<1>")
        ch.pattern_clear_tags(model_pat)
        if ch.match_1v1_n(assn_pat,model_pat,10000,2)>0:
                result = ch.pattern_get_ext_indices_with_tags(model_pat)
                for atom_tag in result[0]: # just iterate over atom tags
                    if len(atom_tag[1])==1: # one and only one match
                        if atom_tag[1][0]==1:
                            # the following expression both changes the formal charge and resets flag 23
                            alter_list.append([atom_tag[0],
                                                     "formal_charge=-1;flags=flags&-8388609"])

    # now evaluate all of these expressions efficiently en-masse
    cmd.alter_list(selection,alter_list)

    # see if we missed any atoms
    missed_count = cmd.count_atoms("("+selection+") and flag 23")

    if missed_count>0:
        if not quiet:
            # looks like we did, so alter the user
            print(" WARNING: %d atoms did not have formal charges assigned"%missed_count)
        result = 0
    # remove the temporary selection we used to select appropriate residues

    cmd.delete(tmp_sele1)

    return result

def amber99(selection="(all)",quiet=0,_self=cmd):
    cmd=_self
    result = 1
    # first, set all parameters to zero

    cmd.alter(selection,"partial_charge=0")
    cmd.alter(selection,"elec_radius=0.0")
    cmd.alter(selection,"text_type=''")

    # next, flag all atoms so that we'll be able to detect what we miss

    cmd.flag(23,selection,'set')

    # get the amber99 dictionary

    if not hasattr(champ,'amber99_dict'):
        from chempy.champ.amber99 import amber99_dict
        champ.amber99_dict = amber99_dict

    # iterate through the residue dictionary matching each residue based on chemistry
    # and generating the expressions for reassigning formal charges

    alter_list = []
    for resn in champ.amber99_dict.keys():
        if cmd.select(tmp_sele1,"(%s) and resn %s"%(selection,resn))>0:
            entry = champ.amber99_dict[resn]
            for rule in entry:
                model = cmd.get_model(tmp_sele1)
                ch = Champ()
                model_pat = ch.insert_model(model)
                ch.pattern_detect_chirality(model_pat)
                assn_pat = ch.insert_pattern_string(rule[0])
                ch.pattern_clear_tags(model_pat)
                if ch.match_1v1_n(assn_pat,model_pat,10000,2)>0:
                    result = ch.pattern_get_ext_indices_with_tags(model_pat)
                    for atom_tag in result[0]: # just iterate over atom tags
                        if len(atom_tag[1])==1: # one and only one match
                            tag = atom_tag[1][0]
                            prop_list = rule[1][tag]
                            # the following expression both changes the formal charge and resets flag 23
                            alter_list.append([atom_tag[0],
            "name='''%s''';text_type='''%s''';partial_charge=%f;elec_radius=%f;flags=flags&-8388609"%prop_list])

    # now evaluate all of these expressions efficiently en-masse
    cmd.alter_list(selection,alter_list)

    # see if we missed any atoms
    missed_count = cmd.count_atoms("("+selection+") and flag 23")

    if missed_count>0:
        if not quiet:
            # looks like we did, so alter the user
            print(" WARNING: %d atoms did not have properties assigned"%missed_count)
        result = 0

    # remove the temporary selection we used to select appropriate residues

    cmd.delete(tmp_sele1)

    return result