1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
# Copyright 2009-2012 10gen, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MongoDB benchmarking suite."""
import time
import sys
sys.path[0:0] = [""]
import datetime
import cProfile
from pymongo import connection
from pymongo import ASCENDING
trials = 2
per_trial = 5000
batch_size = 100
small = {}
medium = {"integer": 5,
"number": 5.05,
"boolean": False,
"array": ["test", "benchmark"]
}
# this is similar to the benchmark data posted to the user list
large = {"base_url": "http://www.example.com/test-me",
"total_word_count": 6743,
"access_time": datetime.datetime.utcnow(),
"meta_tags": {"description": "i am a long description string",
"author": "Holly Man",
"dynamically_created_meta_tag": "who know\n what"
},
"page_structure": {"counted_tags": 3450,
"no_of_js_attached": 10,
"no_of_images": 6
},
"harvested_words": ["10gen", "web", "open", "source", "application",
"paas", "platform-as-a-service", "technology",
"helps", "developers", "focus", "building",
"mongodb", "mongo"] * 20
}
def setup_insert(db, collection, object):
db.drop_collection(collection)
def insert(db, collection, object):
for i in range(per_trial):
to_insert = object.copy()
to_insert["x"] = i
db[collection].insert(to_insert)
def insert_batch(db, collection, object):
for i in range(per_trial / batch_size):
db[collection].insert([object] * batch_size)
def find_one(db, collection, x):
for _ in range(per_trial):
db[collection].find_one({"x": x})
def find(db, collection, x):
for _ in range(per_trial):
for _ in db[collection].find({"x": x}):
pass
def timed(name, function, args=[], setup=None):
times = []
for _ in range(trials):
if setup:
setup(*args)
start = time.time()
function(*args)
times.append(time.time() - start)
best_time = min(times)
print "%s%d" % (name + (60 - len(name)) * ".", per_trial / best_time)
return best_time
def main():
connection._TIMEOUT = 60 # jack up the timeout
c = connection.Connection()
c.drop_database("benchmark")
db = c.benchmark
timed("insert (small, no index)", insert,
[db, 'small_none', small], setup_insert)
timed("insert (medium, no index)", insert,
[db, 'medium_none', medium], setup_insert)
timed("insert (large, no index)", insert,
[db, 'large_none', large], setup_insert)
db.small_index.create_index("x", ASCENDING)
timed("insert (small, indexed)", insert, [db, 'small_index', small])
db.medium_index.create_index("x", ASCENDING)
timed("insert (medium, indexed)", insert, [db, 'medium_index', medium])
db.large_index.create_index("x", ASCENDING)
timed("insert (large, indexed)", insert, [db, 'large_index', large])
timed("batch insert (small, no index)", insert_batch,
[db, 'small_bulk', small], setup_insert)
timed("batch insert (medium, no index)", insert_batch,
[db, 'medium_bulk', medium], setup_insert)
timed("batch insert (large, no index)", insert_batch,
[db, 'large_bulk', large], setup_insert)
timed("find_one (small, no index)", find_one,
[db, 'small_none', per_trial / 2])
timed("find_one (medium, no index)", find_one,
[db, 'medium_none', per_trial / 2])
timed("find_one (large, no index)", find_one,
[db, 'large_none', per_trial / 2])
timed("find_one (small, indexed)", find_one,
[db, 'small_index', per_trial / 2])
timed("find_one (medium, indexed)", find_one,
[db, 'medium_index', per_trial / 2])
timed("find_one (large, indexed)", find_one,
[db, 'large_index', per_trial / 2])
timed("find (small, no index)", find, [db, 'small_none', per_trial / 2])
timed("find (medium, no index)", find, [db, 'medium_none', per_trial / 2])
timed("find (large, no index)", find, [db, 'large_none', per_trial / 2])
timed("find (small, indexed)", find, [db, 'small_index', per_trial / 2])
timed("find (medium, indexed)", find, [db, 'medium_index', per_trial / 2])
timed("find (large, indexed)", find, [db, 'large_index', per_trial / 2])
# timed("find range (small, no index)", find,
# [db, 'small_none',
# {"$gt": per_trial / 4, "$lt": 3 * per_trial / 4}])
# timed("find range (medium, no index)", find,
# [db, 'medium_none',
# {"$gt": per_trial / 4, "$lt": 3 * per_trial / 4}])
# timed("find range (large, no index)", find,
# [db, 'large_none',
# {"$gt": per_trial / 4, "$lt": 3 * per_trial / 4}])
timed("find range (small, indexed)", find,
[db, 'small_index',
{"$gt": per_trial / 2, "$lt": per_trial / 2 + batch_size}])
timed("find range (medium, indexed)", find,
[db, 'medium_index',
{"$gt": per_trial / 2, "$lt": per_trial / 2 + batch_size}])
timed("find range (large, indexed)", find,
[db, 'large_index',
{"$gt": per_trial / 2, "$lt": per_trial / 2 + batch_size}])
if __name__ == "__main__":
# cProfile.run("main()")
main()
|