1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
"""
Demo script using (Py-) MuPDF "Story" feature.
The following features are implemented:
* Use of Story "template" feature to provide row content
* Use database access (SQLITE) to fetch row content
* Use ElementPosition feature to locate cell positions on page
* Simulate feature "Table Header Repeat"
* Simulate feature "Cell Grid Lines"
"""
import io
import sqlite3
import sys
import pymupdf
"""
Table data. Used to populate a temporary SQL database, which will be processed by the script.
Its only purpose is to avoid carrying around a separate database file.
"""
# codespell:ignore-begin
table_data = """China;Beijing;21542000;1.5%;2018
Japan;Tokyo;13921000;11.2%;2019
DR Congo;Kinshasa;12691000;13.2%;2017
Russia;Moscow;12655050;8.7%;2021
Indonesia;Jakarta;10562088;3.9%;2020
Egypt;Cairo;10107125;9.3%;2022
South Korea;Seoul;9508451;18.3%;2022
Mexico;Mexico City;9209944;7.3%;2020
United Kingdom;London;9002488;13.4%;2020
Bangladesh;Dhaka;8906039;5.3%;2011
Peru;Lima;8852000;26.3%;2012
Iran;Tehran;8693706;9.9%;2016
Thailand;Bangkok;8305218;11.6%;2010
Vietnam;Hanoi;8053663;8.3%;2019
Iraq;Baghdad;7682136;17.6%;2021
Saudi Arabia;Riyadh;7676654;21.4%;2018
Hong Kong;Hong Kong;7291600;100%;2022
Colombia;Bogotá;7181469;13.9%;2011
Chile;Santiago;6310000;32.4%;2012
Turkey;Ankara;5747325;6.8%;2021
Singapore;Singapore;5453600;91.8%;2021
Afghanistan;Kabul;4601789;11.5%;2021
Kenya;Nairobi;4397073;8.3%;2019
Jordan;Amman;4061150;36.4%;2021
Algeria;Algiers;3915811;8.9%;2011
Germany;Berlin;3677472;4.4%;2021
Spain;Madrid;3305408;7.0%;2021
Ethiopia;Addis Ababa;3040740;2.5%;2012
Kuwait;Kuwait City;2989000;70.3%;2018
Guatemala;Guatemala City;2934841;16.7%;2020
South Africa;Pretoria;2921488;4.9%;2011
Ukraine;Kyiv;2920873;6.7%;2021
Argentina;Buenos Aires;2891082;6.4%;2010
North Korea;Pyongyang;2870000;11.1%;2016
Uzbekistan;Tashkent;2860600;8.4%;2022
Italy;Rome;2761632;4.7%;2022
Ecuador;Quito;2800388;15.7%;2020
Cameroon;Yaoundé;2765568;10.2%;2015
Zambia;Lusaka;2731696;14.0%;2020
Sudan;Khartoum;2682431;5.9%;2012
Brazil;Brasília;2648532;1.2%;2012
Taiwan;Taipei (de facto);2608332;10.9%;2020
Yemen;Sanaa;2575347;7.8%;2012
Angola;Luanda;2571861;7.5%;2020
Burkina Faso;Ouagadougou;2453496;11.1%;2019
Ghana;Accra;2388000;7.3%;2017
Somalia;Mogadishu;2388000;14.0%;2021
Azerbaijan;Baku;2303100;22.3%;2022
Cambodia;Phnom Penh;2281951;13.8%;2019
Venezuela;Caracas;2245744;8.0%;2016
France;Paris;2139907;3.3%;2022
Cuba;Havana;2132183;18.9%;2020
Zimbabwe;Harare;2123132;13.3%;2012
Syria;Damascus;2079000;9.7%;2019
Belarus;Minsk;1996553;20.8%;2022
Austria;Vienna;1962779;22.0%;2022
Poland;Warsaw;1863056;4.9%;2021
Philippines;Manila;1846513;1.6%;2020
Mali;Bamako;1809106;8.3%;2009
Malaysia;Kuala Lumpur;1782500;5.3%;2019
Romania;Bucharest;1716983;8.9%;2021
Hungary;Budapest;1706851;17.6%;2022
Congo;Brazzaville;1696392;29.1%;2015
Serbia;Belgrade;1688667;23.1%;2021
Uganda;Kampala;1680600;3.7%;2019
Guinea;Conakry;1660973;12.3%;2014
Mongolia;Ulaanbaatar;1466125;43.8%;2020
Honduras;Tegucigalpa;1444085;14.0%;2021
Senegal;Dakar;1438725;8.5%;2021
Niger;Niamey;1334984;5.3%;2020
Uruguay;Montevideo;1319108;38.5%;2011
Bulgaria;Sofia;1307439;19.0%;2021
Oman;Muscat;1294101;28.6%;2021
Czech Republic;Prague;1275406;12.1%;2022
Madagascar;Antananarivo;1275207;4.4%;2018
Kazakhstan;Astana;1239900;6.5%;2022
Nigeria;Abuja;1235880;0.6%;2011
Georgia;Tbilisi;1201769;32.0%;2022
Mauritania;Nouakchott;1195600;25.9%;2019
Qatar;Doha;1186023;44.1%;2020
Libya;Tripoli;1170000;17.4%;2019
Myanmar;Naypyidaw;1160242;2.2%;2014
Rwanda;Kigali;1132686;8.4%;2012
Mozambique;Maputo;1124988;3.5%;2020
Dominican Republic;Santo Domingo;1111838;10.0%;2010
Armenia;Yerevan;1096100;39.3%;2021
Kyrgyzstan;Bishkek;1074075;16.5%;2021
Sierra Leone;Freetown;1055964;12.5%;2015
Nicaragua;Managua;1055247;15.4%;2020
Canada;Ottawa;1017449;2.7%;2021
Pakistan;Islamabad;1014825;0.4%;2017
Liberia;Monrovia;1010970;19.5%;2008
United Arab Emirates;Abu Dhabi;1010092;10.8%;2020
Malawi;Lilongwe;989318;5.0%;2018
Haiti;Port-au-Prince;987310;8.6%;2015
Sweden;Stockholm;978770;9.4%;2021
Eritrea;Asmara;963000;26.6%;2020
Israel;Jerusalem;936425;10.5%;2019
Laos;Vientiane;927724;12.5%;2019
Chad;N'Djamena;916000;5.3%;2009
Netherlands;Amsterdam;905234;5.2%;2022
Central African Republic;Bangui;889231;16.3%;2020
Panama;Panama City;880691;20.2%;2013
Tajikistan;Dushanbe;863400;8.9%;2020
Nepal;Kathmandu;845767;2.8%;2021
Togo;Lomé;837437;9.7%;2010
Turkmenistan;Ashgabat;791000;12.5%;2017
Moldova;Chişinău;779300;25.5%;2019
Croatia;Zagreb;769944;19.0%;2021
Gabon;Libreville;703904;30.1%;2013
Norway;Oslo;697010;12.9%;2021
Macau;Macau;671900;97.9%;2022
United States;Washington D.C.;670050;0.2%;2021
Jamaica;Kingston;662491;23.4%;2019
Finland;Helsinki;658864;11.9%;2021
Tunisia;Tunis;638845;5.2%;2014
Denmark;Copenhagen;638117;10.9%;2021
Greece;Athens;637798;6.1%;2021
Latvia;Riga;605802;32.3%;2021
Djibouti;Djibouti (city);604013;54.6%;2012
Ireland;Dublin;588233;11.8%;2022
Morocco;Rabat;577827;1.6%;2014
Lithuania;Vilnius;576195;20.7%;2022
El Salvador;San Salvador;570459;9.0%;2019
Albania;Tirana;557422;19.5%;2011
North Macedonia;Skopje;544086;25.9%;2015
South Sudan;Juba;525953;4.9%;2017
Paraguay;Asunción;521559;7.8%;2020
Portugal;Lisbon;509614;5.0%;2020
Guinea-Bissau;Bissau;492004;23.9%;2015
Slovakia;Bratislava;440948;8.1%;2020
Estonia;Tallinn;438341;33.0%;2021
Australia;Canberra;431380;1.7%;2020
Namibia;Windhoek;431000;17.0%;2020
Tanzania;Dodoma;410956;0.6%;2012
Papua New Guinea;Port Moresby;364145;3.7%;2011
Ivory Coast;Yamoussoukro;361893;1.3%;2020
Lebanon;Beirut;361366;6.5%;2014
Bolivia;Sucre;360544;3.0%;2022
Puerto Rico (US);San Juan;342259;10.5%;2020
Costa Rica;San José;342188;6.6%;2018
Lesotho;Maseru;330760;14.5%;2016
Cyprus;Nicosia;326739;26.3%;2016
Equatorial Guinea;Malabo;297000;18.2%;2018
Slovenia;Ljubljana;285604;13.5%;2021
East Timor;Dili;277279;21.0%;2015
Bosnia and Herzegovina;Sarajevo;275524;8.4%;2013
Bahamas;Nassau;274400;67.3%;2016
Botswana;Gaborone;273602;10.6%;2020
Benin;Porto-Novo;264320;2.0%;2013
Suriname;Paramaribo;240924;39.3%;2012
India;New Delhi;249998;0.0%;2011
Sahrawi Arab Democratic Republic;Laayoune (claimed) - Tifariti (de facto);217732 - 3000;—;2014
New Zealand;Wellington;217000;4.2%;2021
Bahrain;Manama;200000;13.7%;2020
Kosovo;Pristina;198897;12.0%;2011
Montenegro;Podgorica;190488;30.3%;2020
Belgium;Brussels;187686;1.6%;2022
Cape Verde;Praia;159050;27.1%;2017
Mauritius;Port Louis;147066;11.3%;2018
Curaçao (Netherlands);Willemstad;136660;71.8%;2011
Burundi;Gitega;135467;1.1%;2020
Switzerland;Bern (de facto);134591;1.5%;2020
Transnistria;Tiraspol;133807;38.5%;2015
Maldives;Malé;133412;25.6%;2014
Iceland;Reykjavík;133262;36.0%;2021
Luxembourg;Luxembourg City;124509;19.5%;2021
Guyana;Georgetown;118363;14.7%;2012
Bhutan;Thimphu;114551;14.7%;2017
Comoros;Moroni;111326;13.5%;2016
Barbados;Bridgetown;110000;39.1%;2014
Sri Lanka;Sri Jayawardenepura Kotte;107925;0.5%;2012
Brunei;Bandar Seri Begawan;100700;22.6%;2007
Eswatini;Mbabane;94874;8.0%;2010
New Caledonia (France);Nouméa;94285;32.8%;2019
Fiji;Suva;93970;10.2%;2017
Solomon Islands;Honiara;92344;13.0%;2021
Republic of Artsakh;Stepanakert;75000;62.5%;2021
Gambia;Banjul;73000;2.8%;2013
São Tomé and Príncipe;São Tomé;71868;32.2%;2015
Kiribati;Tarawa;70480;54.7%;2020
Vanuatu;Port Vila;51437;16.1%;2016
Northern Mariana Islands (USA);Saipan;47565;96.1%;2017
Samoa;Apia;41611;19.0%;2021
Palestine;Ramallah (de facto);38998;0.8%;2017
Monaco;Monaco;38350;104.5%;2020
Jersey (UK);Saint Helier;37540;34.2%;2018
Trinidad and Tobago;Port of Spain;37074;2.4%;2011
Cayman Islands (UK);George Town;34399;50.5%;2021
Gibraltar (UK);Gibraltar;34003;104.1%;2020
Grenada;St. George's;33734;27.1%;2012
Aruba (Netherlands);Oranjestad;28294;26.6%;2010
Isle of Man (UK);Douglas;27938;33.2%;2011
Marshall Islands;Majuro;27797;66.1%;2011
Tonga;Nukuʻalofa;27600;26.0%;2022
Seychelles;Victoria;26450;24.8%;2010
French Polynesia (France);Papeete;26926;8.9%;2017
Andorra;Andorra la Vella;22873;28.9%;2022
Faroe Islands (Denmark);Tórshavn;22738;43.0%;2022
Antigua and Barbuda;St. John's;22219;23.8%;2011
Belize;Belmopan;20621;5.2%;2016
Saint Lucia;Castries;20000;11.1%;2013
Guernsey (UK);Saint Peter Port;18958;30.1%;2019
Greenland (Denmark);Nuuk;18800;33.4%;2021
Dominica;Roseau;14725;20.3%;2011
Saint Kitts and Nevis;Basseterre;14000;29.4%;2018
Saint Vincent and the Grenadines;Kingstown;12909;12.4%;2012
British Virgin Islands (UK);Road Town;12603;40.5%;2012
Åland (Finland);Mariehamn;11736;39.0%;2021
U.S. Virgin Islands (US);Charlotte Amalie;14477;14.5%;2020
Micronesia;Palikir;6647;5.9%;2010
Tuvalu;Funafuti;6320;56.4%;2017
Malta;Valletta;5827;1.1%;2019
Liechtenstein;Vaduz;5774;14.8%;2021
Saint Pierre and Miquelon (France);Saint-Pierre;5394;91.7%;2019
Cook Islands (NZ);Avarua;4906;28.9%;2016
San Marino;City of San Marino;4061;12.0%;2021
Turks and Caicos Islands (UK);Cockburn Town;3720;8.2%;2016
American Samoa (USA);Pago Pago;3656;8.1%;2010
Saint Martin (France);Marigot;3229;10.1%;2017
Saint Barthélemy (France);Gustavia;2615;24.1%;2010
Falkland Islands (UK);Stanley;2460;65.4%;2016
Svalbard (Norway);Longyearbyen;2417;82.2%;2020
Sint Maarten (Netherlands);Philipsburg;1894;4.3%;2011
Christmas Island (Australia);Flying Fish Cove;1599;86.8%;2016
Anguilla (UK);The Valley;1067;6.8%;2011
Guam (US);Hagåtña;1051;0.6%;2010
Wallis and Futuna (France);Mata Utu;1029;8.9%;2018
Bermuda (UK);Hamilton;854;1.3%;2016
Nauru;Yaren (de facto);747;6.0%;2011
Saint Helena (UK);Jamestown;629;11.6%;2016
Niue (NZ);Alofi;597;30.8%;2017
Tokelau (NZ);Atafu;541;29.3%;2016
Vatican City;Vatican City (city-state);453;100%;2019
Montserrat (UK);Brades (de facto) - Plymouth (de jure);449 - 0;-;2011
Norfolk Island (Australia);Kingston;341;-;2015
Palau;Ngerulmud;271;1.5%;2010
Cocos (Keeling) Islands (Australia);West Island;134;24.6%;2011
Pitcairn Islands (UK);Adamstown;40;100.0%;2021
South Georgia and the South Sandwich Islands (UK);King Edward Point;22;73.3%;2018"""
# codespell:ignore-end
# -------------------------------------------------------------------
# HTML template for the report. We define no table header <th> items
# because this is done in post processing.
# The actual template part is the table row, identified by id "row".
# The content of each cell will be filled using the respective id.
# -------------------------------------------------------------------
HTML = """
<h1 style="text-align:center">World Capital Cities</h1>
<p><i>Percent "%" is city population as a percentage of the country, as of "Year".</i>
</p><p></p>
<table>
<tr id="row">
<td id="country"></td>
<td id="capital"></td>
<td id="population"></td>
<td id="percent"></td>
<td id="year"></td>
</tr>
</table>
"""
# -------------------------------------------------------------------
# Sets font-family globally to sans-serif, and text-align to right
# for the numerical table columns.
# -------------------------------------------------------------------
CSS = """
body {
font-family: sans-serif;
}
td[id="population"], td[id="percent"], td[id="year"] {
text-align: right;
padding-right: 2px;
}"""
# -------------------------------------------------------------------
# recorder function for cell positions
# -------------------------------------------------------------------
coords = {} # stores cell gridline coordinates
def recorder(elpos):
"""We only record positions of table rows and cells.
Information is stored in "coords" with page number as key.
"""
global coords # dictionary of row and cell coordinates per page
if elpos.open_close != 2: # only consider coordinates provided at "close"
return
if elpos.id not in ("row", "country", "capital", "population", "percent", "year"):
return # only look at row / cell content
rect = pymupdf.Rect(elpos.rect) # cell rectangle
if rect.y1 > elpos.filled: # ignore stuff below the filled rectangle
return
# per page, we store the floats top-most y, right-most x, column left
# and row bottom borders.
x, y, x1, y0 = coords.get(elpos.page, (set(), set(), 0, sys.maxsize))
if elpos.id != "row":
x.add(rect.x0) # add cell left border coordinate
if rect.x1 > x1: # store right-most cell border on page
x1 = rect.x1
else:
y.add(rect.y1) # add row bottom border coordinate
if rect.y0 < y0: # store top-most cell border per page
y0 = rect.y0
coords[elpos.page] = (x, y, x1, y0) # write back info per page
return
# -------------------------------------------------------------------
# define database access: make an intermediate memory database for
# our demo purposes.
# -------------------------------------------------------------------
dbfilename = ":memory:" # the SQLITE database file name
database = sqlite3.connect(dbfilename) # open database
cursor = database.cursor() # multi-purpose database cursor
# Define and fill the SQLITE database
cursor.execute(
"""CREATE TABLE capitals (Country text, Capital text, Population text, Percent text, Year text)"""
)
for value in table_data.splitlines():
cursor.execute("INSERT INTO capitals VALUES (?,?,?,?,?)", value.split(";"))
# select statement for the rows - let SQL also sort it for us
select = """SELECT * FROM capitals ORDER BY "Country" """
# -------------------------------------------------------------------
# define the HTML Story and fill it with database data
# -------------------------------------------------------------------
story = pymupdf.Story(HTML, user_css=CSS)
body = story.body # access the HTML body detail
template = body.find(None, "id", "row") # find the template part
table = body.find("table", None, None) # find start of table
# read the rows from the database and put them all in one Python list
# NOTE: instead, we might fetch rows one by one (advisable for large volumes)
cursor.execute(select) # execute cursor, and ...
rows = cursor.fetchall() # read out what was found
database.close() # no longer needed
for country, capital, population, percent, year in rows: # iterate through the row
row = template.clone() # clone the template to report each row
row.find(None, "id", "country").add_text(country)
row.find(None, "id", "capital").add_text(capital)
row.find(None, "id", "population").add_text(population)
row.find(None, "id", "percent").add_text(percent)
row.find(None, "id", "year").add_text(year)
table.append_child(row)
template.remove() # remove the template
# -------------------------------------------------------------------
# generate the PDF and write it to memory
# -------------------------------------------------------------------
fp = io.BytesIO()
writer = pymupdf.DocumentWriter(fp)
mediabox = pymupdf.paper_rect("letter") # use pages in Letter format
where = mediabox + (36, 36, -36, -72) # leave page borders
more = True
page = 0
while more:
dev = writer.begin_page(mediabox) # make a new page
if page > 0: # leave room above the cells for inserting header row
delta = (0, 20, 0, 0)
else:
delta = (0, 0, 0, 0)
more, filled = story.place(where + delta) # arrange content on this rectangle
story.element_positions(recorder, {"page": page, "filled": where.y1})
story.draw(dev) # write content to page
writer.end_page() # finish the page
page += 1
writer.close() # close the PDF
# -------------------------------------------------------------------
# re-open memory PDF for inserting gridlines and header rows
# -------------------------------------------------------------------
doc = pymupdf.open("pdf", fp)
for page in doc:
page.wrap_contents() # ensure all "cm" commands are properly wrapped
x, y, x1, y0 = coords[page.number] # read coordinates of the page
x = sorted(list(x)) + [x1] # list of cell left-right borders
y = [y0] + sorted(list(y)) # list of cell top-bottom borders
shape = page.new_shape() # make a canvas to draw upon
for item in y: # draw horizontal lines (one under each row)
shape.draw_line((x[0] - 2, item), (x[-1] + 2, item))
for i in range(len(y)): # alternating row coloring
if i % 2:
rect = (x[0] - 2, y[i - 1], x[-1] + 2, y[i])
shape.draw_rect(rect)
for i in range(len(x)): # draw vertical lines
d = 2 if i == len(x) - 1 else -2
shape.draw_line((x[i] + d, y[0]), (x[i] + d, y[-1]))
# Write header row above table content
y0 -= 5 # bottom coord for header row text
shape.insert_text((x[0], y0), "Country", fontname="hebo", fontsize=12)
shape.insert_text((x[1], y0), "Capital", fontname="hebo", fontsize=12)
shape.insert_text((x[2], y0), "Population", fontname="hebo", fontsize=12)
shape.insert_text((x[3], y0), " %", fontname="hebo", fontsize=12)
shape.insert_text((x[4], y0), "Year", fontname="hebo", fontsize=12)
# Write page footer
y0 = page.rect.height - 50 # top coordinate of footer bbox
bbox = pymupdf.Rect(0, y0, page.rect.width, y0 + 20) # footer bbox
page.insert_textbox(
bbox,
f"World Capital Cities, Page {page.number+1} of {doc.page_count}",
align=pymupdf.TEXT_ALIGN_CENTER,
)
shape.finish(width=0.3, color=0.5, fill=0.9) # rectangles and gray lines
shape.commit(overlay=False) # put the drawings in background
doc.subset_fonts()
doc.save(__file__.replace(".py", ".pdf"), deflate=True, garbage=4, pretty=True)
doc.close()
|