File: control

package info (click to toggle)
pymvpa 0.4.5~dev23-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 6,884 kB
  • ctags: 3,480
  • sloc: python: 25,450; cpp: 2,663; ansic: 445; makefile: 426; sh: 194
file content (57 lines) | stat: -rw-r--r-- 2,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Source: pymvpa
Section: python
Priority: optional
Maintainer: NeuroDebian Team <team@neuro.debian.net>
Uploaders: Michael Hanke <michael.hanke@gmail.com>, Yaroslav Halchenko <debian@onerussian.com>
Build-Depends: cdbs, debhelper (>= 5.0.38), swig, python-all-dev (>= 2.5), python-support (>= 0.6), python-numpy, libsvm-dev (>= 2.84.0), python-epydoc (>> 2.99), python-docutils (<< 0.6) | python-docutils (>= 0.6-3~), python-sphinx, help2man, rsync, graphviz, python-lxml, python-nifti, python-nose, shogun-python-modular
Build-Conflicts: python-epydoc (= 3.0.1-3)
Standards-Version: 3.9.0
Homepage: http://www.pymvpa.org
Vcs-Browser: http://git.debian.org/?p=pkg-exppsy/pymvpa.git
Vcs-Git: git://git.debian.org/git/pkg-exppsy/pymvpa.git
XS-DM-Upload-Allowed: yes

Package: python-mvpa
Architecture: all
Depends: ${misc:Depends}, ${python:Depends}, python-numpy, python-mvpa-lib(>= ${source:Version})
Provides: ${python:Provides}
XB-Python-Version: ${python:Versions}
Recommends: python-nifti, python-psyco, python-mdp, python-scipy, shogun-python-modular, python-pywt, python-matplotlib, python-reportlab
Suggests: fslview, fsl, python-nose, python-lxml, python-openopt, python-rpy, python-mvpa-doc
Description: multivariate pattern analysis with Python
 Python module to ease pattern classification analyses of large
 datasets. It provides high-level abstraction of typical processing
 steps (e.g. data preparation, classification, feature selection,
 generalization testing), a number of implementations of some popular
 algorithms (e.g. kNN, GNB, Ridge Regressions, Sparse Multinomial Logistic
 Regression), and bindings to external machine learning libraries (libsvm,
 shogun).
 .
 While it is not limited to neuroimaging data (e.g. fMRI, or EEG) it
 is eminently suited for such datasets.


Package: python-mvpa-doc
Architecture: all
Section: doc
Depends: ${misc:Depends}, libjs-jquery
Suggests: python-mvpa
Description: documentation and examples for PyMVPA
 PyMVPA documentation in various formats (HTML, TXT) including
  * User manual
  * Developer guidelines
  * API documentation
 .
 Additionally, all example scripts shipped with the PyMVPA sources are
 included.


Package: python-mvpa-lib
Architecture: any
Depends: ${misc:Depends}, ${shlibs:Depends}, ${python:Depends}, python-numpy
Provides: ${python:Provides}
XB-Python-Version: ${python:Versions}
Description: low-level implementations and bindings for PyMVPA
 This is an add-on package for the PyMVPA framework. It provides a low-level
 implementation of an SMLR classifier and custom Python bindings for the LIBSVM
 library.