1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
#!/usr/bin/env python
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""
ERP/ERF-Plots
=============
Example demonstrating an ERP-style plots. Actually, this code can be used to
plot various time-locked data types. This example uses MEG data and therefore
generates an ERF-plot.
"""
from mvpa.suite import *
# load data
meg = TuebingenMEG(os.path.join(pymvpa_dataroot, 'tueb_meg.dat.gz'))
# Define plots for easy feeding into plotERP
plots = []
colors = ['r', 'b', 'g']
# figure out pre-stimulus onset interval
t0 = -meg.timepoints[0]
plots = [ {'label' : meg.channelids[i],
'color' : colors[i],
'data' : meg.data[:, i, :]}
for i in xrange(len(meg.channelids)) ]
# Common arguments for all plots
cargs = {
'SR' : meg.samplingrate,
'pre_onset' : t0,
# Plot only 50ms before and 100ms after the onset since we have
# just few trials
'pre' : 0.05, 'post' : 0.1,
# Plot all 'errors' in different degrees of shadings
'errtype' : ['ste', 'ci95', 'std'],
# Set to None if legend manages to obscure the plot
'legend' : 'best',
'alinewidth' : 1 # assume that we like thin lines
}
# Create a new figure
fig = P.figure(figsize=(12, 8))
# Following plots are plotted inverted (negative up) for the
# demonstration of this capability and elderly convention for ERP
# plots. That is controlled with ymult (negative gives negative up)
# Plot MEG sensors
# frame_on=False guarantees abent outside rectangular axis with
# labels. plotERP recreates its own axes centered at (0,0)
ax = fig.add_subplot(2, 1, 1, frame_on=False)
plotERPs(plots[:2], ylabel='$pT$', ymult=-1e12, ax=ax, **cargs)
# Plot EEG sensor
ax = fig.add_subplot(2, 1, 2, frame_on=False)
plotERPs(plots[2:3], ax=ax, ymult=-1e6, **cargs)
# Additional example: plotting a single ERP on an existing plot
# without drawing axis:
#
# plotERP(data=meg.data[:, 0, :], SR=meg.samplingrate, pre=pre,
# pre_mean=pre, errtype=errtype, ymult=-1.0)
if cfg.getboolean('examples', 'interactive', True):
# show all the cool figures
P.show()
"""
The ouput of the provided example is presented below. It is not a very
fascinating one due to the limited number of samples provided in the
dataset shipped within the toolbox.
.. image:: ../pics/ex_erp_plot.*
:align: center
:alt: ERP plot example
"""
|