File: kernels.tex

package info (click to toggle)
pymvpa 0.4.5~dev23-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 6,884 kB
  • ctags: 3,480
  • sloc: python: 25,450; cpp: 2,663; ansic: 445; makefile: 426; sh: 194
file content (355 lines) | stat: -rw-r--r-- 16,174 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
\documentclass[a4paper,11pt]{article}
\usepackage[latin1]{inputenc}
\usepackage[english]{babel}
\usepackage{epsfig}
\usepackage{amsmath}
\usepackage{amsfonts}

\newcommand\R{{\mathbb R}}
\newcommand\x{{\mathbf x}}
\newcommand\X{{\mathbf X}}
\newcommand\K{{\mathbf K}}
\newcommand\J{{\mathbf J}}
\newcommand\LL{{\mathbf L}}
\newcommand\ELL{{\Ivec \ell}}
%%\newcommand\L{{\mathbf L}}
%%\DeclareMathOperator*{\argmax}{arg\,max}
%% \DeclareMathOperator*{\argmax}{argmax} %% (argmax wihtouth mid space)
\DeclareMathOperator*{\argmin}{arg\,min}
\DeclareMathOperator*{\var}{var}
\DeclareMathOperator*{\dm}{dm}
\newcommand{\Rvec}[1]{{\bf #1}}
\newcommand{\Ivec}[1]{\mbox{\boldmath $#1$}}

\title{Kernels}
\author{Emanuele Olivetti}

\begin{document}

\maketitle

\section{Introduction}
This document gives a detailed description of kernels implemented in
PyMVPA together with derivation of their gradients. Gradients are
useful when trying to maximize the marginal likelihood of a Gaussian,
i.e., during model selection.

The following notation and definitions are used:
\begin{itemize}
\item $\x \in \R^D$ : a $D$-dimensional column vector, $\x =
  (x_1,\ldots,x_D)$.
\item $\X = (\x_1^{\top},\ldots,\x_N^{\top})$ : a $N \times D$ matrix
  where each row is a $D$-dimensional vector. $\X$ is also called set
  of \emph{samples}. $\X_{* i}$ indicates the $i$-th column of $\X$
  and is a column vector. $\X_{j *}$ indicates the $j$-th row of $\X$
  and is a row vector.
\item $k: \R^D \times \R^D \rightarrow \R$ : a covariance (or kernel)
  function.
\item $\K(\X,\X')$ : the matrix extension of $k$, i.e., $\K_{pq} =
  k(\X_{*p},\X'_{*q})$. If $\X$ is a $N \times D$ matrix and $\X'$ is
  $N' \times D$ then $\K(\X,\X')$ is a $N \times N'$ matrix.
\item $\J_{n,m}$ : the $n \times m$ matrix of ones, i.e., a matrix
  where each element is 1.
\item $\|\mathbf{z}\|_p$ : the $p$-norm of vector $\mathbf{z}$ defined
  as $\|\mathbf{z}\|_p = (\sum_{i=1}^D \|z_i\|^p)^{\frac{1}{p}}$.
  Euclidean norm is $p=2$, then $\|\mathbf{z}\|_2 =
  \sqrt{\mathbf{z}^{\top}\mathbf{z}} = \sqrt{\sum_{i=1}^D z_i^2}$.
\item $\|\mathbf{z},\mathbf{w}\|_p$ : the \emph{weighted} $p$-norm of
  vector $\mathbf{z}$ defined as $\|\mathbf{z},\mathbf{w}\|_p =
  (\sum_{i=1}^D w_i|z_i|^p)^{\frac{1}{p}}$.  Euclidean norm is
  $p=2$, then $\|\mathbf{z},\mathbf{w}\|_2 = \sqrt{\mathbf{z}^{\top}
    \mathbf{W}^{-1} \mathbf{z}} = \sqrt{\sum_{i=1}^D w_i z_i^2}$,
  where $\mathbf{W} = diag(\mathbf{w})$.
\item $\dm(\X,\X')$ : the \emph{Euclidean distance matrix} between
  $\X$ and $\X'$ defined element by element as $\dm(\X,\X')_{pq} =
  \|\X_{p *} - \X'_{q *}\|_2 = \sqrt{\sum_{i=1}^D (\X_{p i} - \X'_{q
      i})^2}$. If $\X$ is a $N \times D$ matrix and $\X'$ is $N'
  \times D$ then $\dm(\X,\X1)$ is a $N \times N'$ matrix. Note that
  $\dm(\X,X')$ is the square root of what it is usually called
  ``distance matrix''.
\item $\dm(\X,\X',\mathbf{w})$ : the \emph{weighted} Euclidean
  distance matrix between $\X$ and $\X'$ defined element by element as
  $\dm(\X,\X',\mathbf{w})_{pq} = \|(\X_{p *} - \X'_{q *})^{\top},
  \mathbf{w}\|_2 = \sqrt{\sum_{i=1}^D w_i(\X_{p i} - \X'_{q i})^2}$
  through the weight vector $\mathbf{w} \in \R^D$. It is
  straightforward that $\dm(\X,\X') = \dm(\X,\X',\mathbf{J}_{D,1})$.
\item $\X \bullet \mathbf{Y}$ : the Hadamard (or Schur) matrix
  product, i.e. the entrywise product between matrices of the same
  size. Let $\mathbf{Z} = \X \bullet \mathbf{Y}$, then $z_{ij} =
  x_{ij} y_{ij}$.
\item $\X^{\alpha}$ : $(\X^{\alpha})_{ij} = (X_{ij})^{\alpha}$.
\end{itemize}

\section{Constant kernel}
$$k(\x,\x') = \sigma_0^2$$
where $\sigma_0 \ge 0$ is the standard deviation of the Gaussian prior
probability $\mathcal{N}(0,\sigma_0^2)$ of the value of the constant.
$$\K(\X,\X') = \sigma_0^2 \J_{N,N'}$$
$$\mathbf{\Theta} = \{\sigma_0\}$$
$$\frac{\partial k}{\partial \sigma_0}(\x,\x') = 2\sigma_0$$
$$\frac{\partial \K}{\partial \sigma_0} = 2\sigma_0 \J_{N,N'}$$
$$A = \sigma_0^2$$
$$A \ge 0$$
$$\mathbf{\Theta}^* = \{A\}$$
$$k(\x,\x') = A$$
$$\K(\X,\X') = A \J_{N,N'}$$
$$\frac{\partial k}{\partial A} = 1$$
$$\nabla_A \K = \frac{\partial \K}{\partial A} = \J_{N,N'}$$
Note that using $A$ as hyperparameter the gradient becomes constant.

\section{Linear kernel}
Let $\Ivec{\Sigma}_p$ be the $D \times D$ covariance matrix of the Gaussian
prior probability $\mathcal{N}(\Ivec{0},\Ivec{\Sigma}_p)$ of the weights of
the Bayesian linear regression.
$$k(\x,\x') = \x^{\top} \Ivec{\Sigma}_p \x'$$
$$\K(\X,\X') = \X \Ivec{\Sigma}_p \X'^{\top}$$
In order to simplify formulas we assume $\Ivec{\Sigma}_p$ is diagonal, i.e.,
$\Ivec{\Sigma}_p = diag(\Ivec{\sigma}^2_p)$ where $\Ivec{\sigma}^2_p =
({\sigma^2_p}_1,\ldots,{\sigma^2_p}_D)$:
$$k(\x,\x') = \sum_{i=1}^D {\sigma^2_p}_i x_i x'_i$$
$$\mathbf{\Theta} = \{{\sigma_p}_1,\ldots,{\sigma_p}_D\}$$
$$\frac{\partial k}{\partial {\sigma_p}_i} = 2 {\sigma_p}_i x_i x'_i$$
$$A_i = {\sigma_p^2}_i$$
$$A_i \ge 0$$
$$\mathbf{A} = (A_1,\ldots,A_D)^{\top}$$
$$\mathbf{\Theta}^* = \{ \mathbf{A} \}$$
$$k(\x,\x') = \x^{\top} diag(\mathbf{A}) \x'$$
$$\K(\X,\X') = \X diag(\mathbf{A}) \X'^{\top}$$
$$\frac{\partial k}{\partial A_i} = x_i x'_i$$
$$\frac{\partial \K}{\partial A_i} = \X_{* i} {\X'_{* i}}^{\top}$$
$$\nabla_{\mathbf{A}} \K = ( \X_{* 1} {\X'_{* 1}}^{\top}, \ldots,
\X_{* D} {\X'_{* D}}^{\top})$$
As expected the gradient is independent of the hyperparameters values
and can be computed once for all at the beginning.

\section{Polynomial kernel}
$$k(\x,\x') = (\sigma_0^2 + \x^{\top} \Ivec{\Sigma}_p \x')^p =
(\sigma_0^2 + \sum_{i=1}^D {\sigma^2_p}_i x_i x'_i)^p$$
$$\K(\X,\X') = (\sigma_0^2 \mathbf{J}_{N,N'} + \X \Ivec{\Sigma}_p
\X'^{\top})^p$$
In order to simplify formulas we assume $\Ivec{\Sigma}_p$ is diagonal, i.e.,
$\Ivec{\Sigma}_p = diag(\Ivec{\sigma}^2_p)$ where $\Ivec{\sigma}^2_p =
({\sigma^2_p}_1,\ldots,{\sigma^2_p}_D)$.
$$\sigma_0 \ge 0$$
$$\Ivec{\sigma}_p = ({\sigma_p}_1,\ldots,{\sigma_p}_D)$$
$${\sigma_p}_i \ge 0$$
$$\mathbf{\Theta} = \{\sigma_0,\Ivec{\sigma}_p, p\}$$
$$A = \sigma_0^2$$
$$B_i = {\sigma^2_p}_i$$
$$\mathbf{B} = (B_1,\ldots,B_D)$$
$$\mathbf{\Theta}^* = \{A,\mathbf{B}, p\}$$
$$k(\x,\x') = (A + \x^{\top} diag(\mathbf{B}) \x')^p = (A +
\sum_{i=1}^D B_i x_i x'_i)^p$$
$$\frac{\partial k}{\partial A} = p(A + \sum_{i=1}^D B_i x_i
x'_i)^{p-1}$$
$$\frac{\partial \K}{\partial A} = p(A\mathbf{J}_{N,N'} + \sum_{i=1}^D
B_i \X_{*i} {\X'_{*i}}^{\top})^{p-1}$$
$$\frac{\partial k}{\partial B_i} = p(A + \sum_{i=1}^D B_i x_i
x'_i)^{p-1} x_i x'_i = \frac{\partial k}{\partial A} x_i x'_i$$
$$\frac{\partial \K}{\partial B_i} = \frac{\partial \K}{\partial A} \X_{*i} {\X'_{*i}}^{\top}$$
$$\frac{\partial k}{\partial p} = k(\x,\x') \ln(A + \sum_{i=1}^D B_i x_i
x'_i)$$
$$\frac{\partial \K}{\partial p} = \K(\X,\X') \bullet \ln(A \mathbf{J}_{N,N'}+ \sum_{i=1}^D B_i \X_{*i} \X'_{*i})$$
$$\mathbf{M} = A \mathbf{J}_{N,N'}+ \sum_{i=1}^D B_i \X_{*i} \X'_{*i}$$
$$\nabla_{A,\mathbf{B},p} \K = \left(p\mathbf{M}^{p-1},\left\{p\mathbf{M}^{p-1} \X_{*i} {\X'_{*i}}^{\top} \right\}_{i=1,\ldots,D}, \K(\X,\X') \bullet \ln(\mathbf{M}) \right)$$

\section{Exponential kernel}
\subsection{Scalar Lengthscale $\ell$}
$$k(\x,\x') = \sigma_f^2 e^{-\frac{\|\x-\x'\|_2}{\ell}}$$
$$\ell > 0$$
$$\sigma_f \ge 0$$
$$\mathbf{\Theta} = \{ \sigma_f, \ell \}$$
$$\K(\X,\X') = \sigma_f^2 e^{-\frac{1}{\ell}\dm(\X,\X')}$$
$$A = \sigma_f^2$$
$$A \ge 0$$
$$B = -\frac{1}{\ell}$$
$$B < 0$$
$$\mathbf{\Theta}^* = \{ A, B \}$$
$$k(\x,\x') = A e^{B\|\x-\x'\|_2}$$
$$\K(\X,\X') = A e^{B \dm(\X-\X')}$$
$$\frac{\partial k}{\partial A} = e^{B\|\x-\x'\|_2} = \frac{1}{A}k(\x,\x')$$
$$\frac{\partial \K}{\partial A} = e^{B \dm(\X,\X')} = \frac{1}{A} \K(\X,\X')$$
$$\frac{\partial k}{\partial B} = A e^{B\|\x-\x'\|_2} \|\x-\x'\|_2 =
k(\x,\x') \|\x-\x'\|_2$$
$$\frac{\partial \K}{\partial B} = \K(\X,\X') \bullet \dm(\X-\X')$$
$$\nabla_{A,B} \K = (\frac{1}{A} \K(\X,\X'), \K(\X,\X') \bullet \dm(\X-\X'))$$

Note that if $\K(\X,\X')$ is precomputed, then the gradient consists
in just two element-by-element products, the second being against a
constant matrix independent of the hyperparameters.

\subsection{Vector of Lengthscales $\Ivec{\ell}$}
Given $\Ivec{\ell} = (\ell_1,\ldots,\ell_D)$, $\ell_i \ge 0$ and
$\ELL^{-1} = (1/\ell_1,\ldots,1/\ell_D)$
$$k(\x,\x') = \sigma_f^2 e^{-\|\x-\x',\ELL^{-2}\|_2}= \sigma_f^2
  e^{-\sqrt{\sum_{i=1}^D \left(\frac{x_i - x'_i}{\ell_i}\right)^2}}$$
$$K(\X,\X') = \sigma_f^2 e^{-\dm(\X,\X',\ELL^{-2})}$$
$$\mathbf{\Theta} = \{ \sigma_f, \ELL\}$$
$$\sigma_f \ge 0$$
$$\ell_i > 0$$
$$A = \sigma_f^2$$
$$\mathbf{B} = \ELL^{-2}$$
$$A \ge 0$$
$$B_i > 0$$
$$\mathbf{\Theta}^* = \{ A, \mathbf{B}\}$$
$$k(\x,\x') = A e^{-\|\x-\x',\mathbf{B}\|_2} = A e^{-\sqrt{\sum_{i=1}^D
    B_i(x_i - x'_i)^2}}$$  
$$K(\X,\X') = A e^{-\dm(\X,\X',\mathbf{B})}$$
$$\frac{\partial k}{\partial A} = e^{-\sqrt{\sum_{i=1}^D B_i(x_i -
    x'_i)^2}} = \frac{k(\x,\x')}{A}$$
$$\frac{\partial \K}{\partial A} = e^{-\dm(\X,\X',\mathbf{B})} =
\frac{1}{A}\K(\X,\X')$$ 
$$\frac{\partial k}{\partial B_i} = A e^{-\|\x-\x',\mathbf{B}\|_2}
\left( -\frac{1}{2} \|\x-\x',\mathbf{B}\|_2^3 \right) (x_i - x'_i)^2 =
-\frac{1}{2} k(\x,\x') \|\x-\x',\mathbf{B}\|_2^3 (x_i - x'_i)^2 $$
$$\frac{\partial \K}{\partial B_i} = -\frac{1}{2} K(\X,\X')
\bullet \dm(\X-\X',\mathbf{B})^3 \bullet (\X_{*i}J_{1,N'}-
(\X'_{*i}J_{1,N})^{\top})^2$$
$$\nabla_{A,\mathbf{B}} \K = \left(\frac{1}{A}\K(\X,\X'), \left\{-\frac{1}{2}
    K(\X,\X') \bullet \dm(\X-\X',\mathbf{B})^3 \bullet
    (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2 \right\}_{i=1 \ldots
    D} \right)$$

Note that $\frac{\partial \K}{\partial A}$ requires just the
multiplication of a constant by the kernel matrix $\K(\X,\X')$ whose
values usually already available. Instead $\frac{\partial \K}{\partial
  B_i}$ is a entrywise product of 3 matrices: $\K(\X,\X')$ (usually
already available), $\dm(\X-\X',\mathbf{B})^3$ (which is, apart the
cube, part of the computation of $\K(\X,\X')$ so it can be stored in
advance), and $(\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$ which
does not depend upon $A$ and $\mathbf{B}$ so it can be computed once
for all. Note that in NumPy $(\X_{*i}J_{1,N'}-
(\X'_{*i}J_{1,N})^{\top})^2$ can be computed as {\ttfamily
  numpy.subtract.outer($X_{*i},X'_{*i}$)**2}.

\section{Squared Exponential kernel}

\subsection{Scalar Lengthscale $\ell$}
$$k(\x,\x') = \sigma_f^2 e^{-\frac{1}{2\ell^2} (\x-\x')^{\top}(\x-\x')}
  = \sigma_f^2 e^{-\frac{1}{2\ell^2} \sum_{i=1}^D (x_i - x'_i)^2} =
  \sigma_f^2 e^{-\frac{1}{2\ell^2} \|\x-\x'\|_2^2}$$ 
$$\K(\X,\X') = \sigma_f^2 e^{-\frac{1}{2\ell^2} \dm(\X,\X')^2}$$
$$\sigma_f \ge 0$$
$$\ell > 0$$
$$\mathbf{\Theta} = \{ \sigma_f, \ell \}$$
$$\frac{\partial k}{\partial \sigma_f} = \frac{2}{\sigma_f}k$$
$$\frac{\partial \K}{\partial \sigma_f} = \frac{2}{\sigma_f}\K$$
$$\frac{\partial k}{\partial \ell} = \ell^{-3} k \|\x-\x'\|_2^2 $$
$$\frac{\partial \K}{\partial \ell} = \ell^{-3} \K \bullet \dm(\X,\X')^2$$
$$\nabla_{\sigma_f,\ell} \K = \left(\frac{2}{\sigma_f}K(\X,\X'), \ell^{-3} \K \bullet \dm(\X-\X')^2 \right)$$
Logscale:
$$A = \ln{\sigma_f}$$
$$\sigma_f = e^A$$
$$\frac{\partial k}{\partial A} = 2k$$
$$\frac{\partial \K}{\partial \sigma_f} = 2\K$$
$$B = \ln{\ell}$$
$$\ell = e^B$$
$$\frac{\partial k}{\partial B} = \ell^{-2} k \|\x-\x'\|_2^2$$
$$\frac{\partial \K}{\partial B} = \ell^{-2} \K \bullet \dm(\X,\X')^2 = \K \bullet \dm(\X,\X',\ell^{-2}\J_N)^2$$
$$\nabla_{A,B} \K = \left( 2\K(\X,\X'), \ell^{-2} \K \bullet \dm(\X-\X')^2 \right)$$
Another mapping:
$$A = \sigma_f^2$$
$$B = -\frac{1}{\ell^2}$$
$$A \ge 0$$
$$B < 0$$
$$\mathbf{\Theta}^* = \{ A, B\}$$
$$k(\x,\x') = A e^{B (\x-\x')^{\top}(\x-\x')}$$
$$\K(\X,\X') = A e^{B \dm(\X,\X')^2}$$
$$\frac{\partial k}{\partial A} = \frac{k(\x,\x')}{A}$$
$$\frac{\partial \K}{\partial A} = \frac{1}{A}\K(\X,\X')$$
$$\frac{\partial k}{\partial B} = k(\x,\x') \|\x-\x'\|_2^2$$
$$\frac{\partial \K}{\partial B} = K(\X,\X') \bullet \dm(\X,\X')^2$$
$$\nabla_{A,B} \K = (\frac{1}{A} \K(\X,\X'), \dm(\X-\X')^2 \bullet
\K(\X,\X'))$$

Note that $\nabla_{A,B} \K$ is similar to that of the exponential
kernel so almost all comments made before applies here as well.


\subsection{Vector of Lengthscales $\ELL$}
Let $\mathbf{L} = diag(\ELL)$:
$$k(\x,\x') = \sigma_f^2 e^{-\frac{1}{2}(\x-\x')^{\top} \LL^{-2}
  (\x-\x')} = \sigma_f e^{-\frac{1}{2}\sum_{i=1}^D \frac{(x_i -
    x'_i)^2}{\ell_i^2}} = \sigma_f^2
e^{-\frac{1}{2}\|\x-\x',\ELL^{-2}\|_2^2}$$
$$\K(\X,\X') = \sigma_f^2 e^{-\frac{1}{2} \dm(\X,\X',\ELL^{-2})^2}$$
$$\sigma_f \ge 0$$
$$\ell_i > 0$$
$$\mathbf{\Theta} = \{ \sigma_f, \ELL\}$$
$$\frac{\partial k}{\partial \sigma_f} = \frac{2}{\sigma_f}k$$
$$\frac{\partial \K}{\partial \sigma_f} = \frac{2}{\sigma_f}\K$$
$$\frac{\partial k}{\partial \ell_i} = \ell_i^{-3} k \|\x_i-\x_i'\|_2^2 $$
$$\frac{\partial \K}{\partial \ell_i} = \ell_i^{-3} \K \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$$
$$\nabla_{\sigma_f,\ell} \K = \left(\frac{2}{\sigma_f}K(\X,\X'), \ell_i^{-3} \K \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2 \right)$$
Logscale:
$$A = \ln{\sigma_f}$$
$$\sigma_f = e^A$$
$$\frac{\partial k}{\partial A} = 2k$$
$$\frac{\partial \K}{\partial \sigma_f} = 2\K$$
$$B_i = \ln{\ell_i}$$
$$\ell_i = e^B_i$$
$$\frac{\partial k}{\partial B_i} = \ell_i^{-2} k \|\x_i-\x'_i\|_2^2$$
$$\frac{\partial \K}{\partial B_i} = \ell^{-2} \K \bullet \dm(\X,\X')^2 = \ell_i^{-2} \K \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$$
$$\nabla_{A,\mathbf{B}} \K = \left( 2\K(\X,\X'), \left\{ \ell_i^{-2} \K \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2 \right\}_{i=1 \ldots D} \right)$$
Another mapping:
$$A = \sigma_f$$
$$\mathbf{B} = -\frac{1}{2}\ELL^{-2} =
\left(-\frac{1}{2\ell_1^2},\ldots,-\frac{1}{2\ell_D^2} \right)$$
$$A \ge 0$$
$$B_i < 0$$
$$\mathbf{\Theta}^* = \{ A, \mathbf{B}\}$$
$$k(\x,\x') = A e^{(\x-\x')^{\top} diag(\mathbf{B}) (\x-\x')} = A
e^{\sum_{i=1}^D B_i (x_i - x'_i)^2}$$ 
$$\K(\X,\X') = A e^{\dm(\X,\X',\mathbf{B})}$$
$$\frac{\partial k}{\partial A} = \frac{k(\x,x')}{A}$$
$$\frac{\partial \K}{\partial A} = \frac{1}{A}\K(\X,X')$$
$$\frac{\partial k}{\partial B_i} = k(\x,\x') (x_i -x'_i)^2$$
$$\frac{\partial \K}{\partial B_i} = \K(\X,\X') \bullet
(\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$$
$$\nabla_{A,\mathbf{B}} \K = \left(\frac{\K(\X,\X')}{A}, \left\{ K(\X,\X')
  \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2 \right\}_{i=1
  \ldots D} \right)$$

Note that $\nabla_{A,\mathbf{B}} \K$ requires to compute $K(\X,\X')$
(which is usually already available), and its entrywise product with
$(\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$ which is independent
of the value of the hyperparameters and can be precomputed once for
all.

\section{$\gamma$-Exponential kernels}
$$k(\x,\x') = \sigma_f^2 e^{-(\frac{\x-\x'}{\ell})^\gamma}$$
$$k(\x,\x') = \sigma_f^2 e^{-(\frac{\x-\x'}{\ELL})^\gamma}$$

\section{Mat\'ern kernels}
%% $$k_{\mbox{Mat\'ern}}(\x,\x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{\|\x-\x'\|_2}{\ell}\right)^{\nu} \K_{\nu}\left(\sqrt{2}\nu \frac{\|\x-\x'\|_2}{\ell} \right)$$
%% $$\ell > 0$$
%% $$\nu > 0$$
%% where $K_{\nu}$ is a modified Bessel function (REMOVE?).
Let $\nu$ be half integer, i.e., $\nu = p + 1/2$ ($p \in
\mathbb{Z}^+$), then
$$k_{\nu=p+1/2}(\x,\x') = e^{-\sqrt{2\nu}\frac{\|\x-\x'\|}{\ell}}
\frac{\Gamma(p+1)}{\Gamma(2p+1)} \sum_{i=0}^p
\frac{(p+i)!}{i!(p-i)!}\left(\sqrt{8\nu}\frac{\|\x-\x'\|}{\ell}\right)^{p-i}$$
is the class of Mat\'ern covariance functions with half-integer $\nu$.
$$\nu > 0$$
$$\ell > 0$$
When $\nu \rightarrow \infty$ we obtain the squared exponential
covariance function. Most popular cases of the Mat\'ern functions are
$p=0$ (exponential kernel), $p=1$ and $p=2$:
$$k_{\nu=1/2}(\x,\x') = e^{-\frac{\|\x-\x'\|_2}{\ell}}$$
$$k_{\nu=3/2}(\x,\x') = \left(1+\sqrt{3}\frac{\|\x-\x'\|_2}{\ell}
\right) e^{-\sqrt{3}\frac{\|\x-\x'\|_2}{\ell}}$$ 
$$k_{\nu=5/2}(\x,\x') = \left(1+\sqrt{5}\frac{\|\x-\x'\|_2}{\ell}
 + \frac{5\|\x-\x'\|_2^2}{3\ell^2}\right)
e^{-\sqrt{5}\frac{\|\x-\x'\|_2}{\ell}}$$


\section{Rational Quadratic kernels}
$$k_{RQ} = \left(1+\frac{\|\x-\x'\|_2^2}{2\alpha\ell^2}
\right)^{-\alpha}$$
$$\alpha > 0$$
$$\ell > 0$$



\end{document}