File: numpy1.24.patch

package info (click to toggle)
pynn 0.10.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,156 kB
  • sloc: python: 25,612; cpp: 320; makefile: 117; sh: 80
file content (79 lines) | stat: -rw-r--r-- 3,557 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
Description: fix test failures with numpy 1.24.
Author: Étienne Mollier <emollier@debian.org>
Bug-Debian: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1028812
Forwarded: no
Last-Update: 2023-01-14
---
This patch header follows DEP-3: http://dep.debian.net/deps/dep3/
--- pynn.orig/pyNN/common/populations.py
+++ pynn/pyNN/common/populations.py
@@ -261,7 +261,7 @@
         assert isinstance(n, int)
         if not rng:
             rng = random.NumpyRNG()
-        indices = rng.permutation(np.arange(len(self), dtype=np.int))[0:n]
+        indices = rng.permutation(np.arange(len(self), dtype=int))[0:n]
         logger.debug("The %d cells selected have indices %s" % (n, indices))
         logger.debug("%s.sample(%s)", self.label, n)
         return self._get_view(indices)
@@ -658,7 +658,7 @@
             else:
                 raise Exception(
                     "A maximum of 3 dimensions is allowed. What do you think this is, string theory?")
-            # NEST doesn't like np.int, so to be safe we cast to Python int
+            # NEST doesn't like int, so to be safe we cast to Python int
             size = int(reduce(operator.mul, size))
         self.size = size
         self.label = label or 'population%d' % Population._nPop
@@ -718,7 +718,7 @@
             if (self.first_id > id.min()) or (self.last_id < id.max()):
                 raise ValueError("ids should be in the range [%d,%d], actually [%d, %d]" % (
                     self.first_id, self.last_id, id.min(), id.max()))
-            return (id - self.first_id).astype(np.int)  # this assumes ids are consecutive
+            return (id - self.first_id).astype(int)  # this assumes ids are consecutive
 
     def id_to_local_index(self, id):
         """
@@ -906,7 +906,7 @@
             if self._is_sorted:
                 return np.searchsorted(self.all_cells, id)
             else:
-                result = np.array([], dtype=np.int)
+                result = np.array([], dtype=int)
                 for item in id:
                     data = np.where(self.all_cells == item)[0]
                     if len(data) == 0:
@@ -1159,7 +1159,7 @@
             if self._is_sorted:
                 return np.searchsorted(all_cells, id)
             else:
-                result = np.array([], dtype=np.int)
+                result = np.array([], dtype=int)
                 for item in id:
                     data = np.where(all_cells == item)[0]
                     if len(data) == 0:
@@ -1261,7 +1261,7 @@
         assert isinstance(n, int)
         if not rng:
             rng = random.NumpyRNG()
-        indices = rng.permutation(np.arange(len(self), dtype=np.int))[0:n]
+        indices = rng.permutation(np.arange(len(self), dtype=int))[0:n]
         logger.debug("The %d cells recorded have indices %s" % (n, indices))
         logger.debug("%s.sample(%s)", self.label, n)
         return self[indices]
--- pynn.orig/pyNN/random.py
+++ pynn/pyNN/random.py
@@ -136,11 +136,11 @@
         elif n > 0:
             if mask is not None:
                 assert isinstance(mask, np.ndarray)
-                if mask.dtype == np.bool:
+                if mask.dtype == bool:
                     if mask.size != n:
                         raise ValueError("boolean mask size must equal n")
                 if not self.parallel_safe:
-                    if mask.dtype == np.bool:
+                    if mask.dtype == bool:
                         n = mask.sum()
                     elif mask.dtype == np.integer:
                         n = mask.size