File: adding_backend.txt

package info (click to toggle)
pynn 0.10.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,156 kB
  • sloc: python: 25,612; cpp: 320; makefile: 117; sh: 80
file content (222 lines) | stat: -rw-r--r-- 6,400 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
====================
Adding a new backend
====================


Structure of the codebase
=========================

PyNN is both an API for simulator-independent model descriptions and an
implementation of that API for a number of simulators.

If you wish to add PyNN support for your own simulator, you are welcome to add
it as part of the main PyNN codebase, or you can maintain it separately. The
advantage of the former is that we can help maintain it, and keep it up to date
as the API evolves.

A PyNN-compliant interface is not required to use any of the code from the
``pyNN`` package, it can implement the API entirely independently. However, by
basing an interface on the "common" implementation you can save yourself a lot
of work, since once you implement a small number of low-level functions and
classes, you get the rest of the API for free.

The common implementation
-------------------------

Recording
~~~~~~~~~

The ``recording`` modules provides a base class ``Recorder`` that exposes
methods ``record()``, ``get()``, ``write()`` and ``count()``. Each simulator
using the common implementation then subclasses this base class, and must
implement at least the methods ``_record()``, ``_get()`` and ``_local_count()``.
Each ``Recorder`` instance records only a single variable, whose name is passed
in the constructor.

By default, PyNN scales recorded data to the standard PyNN units (mV for voltage,
etc.), reorders columns if necessary, and adds initial values to the beginning
of the recording if the simulator does not record the value at time 0. In this
way, the structure of the output data is harmonized between simulators. For
large datasets, this can be very time-consuming, and so this restructuring can
be turned off by setting the ``compatible_output`` flag to ``False``.

.. TODO: discuss output file formats.

.. TODO: discuss gathering with MPI


The NEST interface
------------------




The NEURON interface
--------------------


The Brian interface
-------------------


Adding a new simulator interface
================================

The quickest way to add an interface for a new simulator is to implement the
"internal API", described below. Each simulator interface is implemented as
a sub-package within the ``pyNN`` package. The suggested layout for this
sub-package is as follows::
 
    |\_   __init__.py
    |\_   cells.py
    |\_   connectors.py
    |\_   electrodes.py
    |\_   recording.py
    |\_   simulator.py
     \_   synapses.py

The only two files that are *required* are ``__init__.py`` and ``simulator.py``:
the contents of all the other modules being imported into ``__init__.py``.

[Maybe just provide a template, rather than discussing the whole thing]

__init__:
    list_standard_models()  [surely this could be in common?]
    setup() - should call common.setup() and then do whatever initialization is necessary for your backend
    end() - should be in common
    run = common.build_run(simulator)
    reset = common.build_reset(simulator)
    initialize = common.initialize
    get_current_time, get_time_step, get_min_delay, get_max_delay, \
                   num_processes, rank = common.build_state_queries(simulator)
    create = common.build_create(Population)
    connect = common.build_connect(Projection, FixedProbabilityConnector)
    set = common.set ??
    record = common.build_record(simulator)
    record_v = lambda source, filename: record(['v'], source, filename)
    record_gsyn = lambda source, filename: record(['gsyn_exc', 'gsyn_inh'], source, filename)

simulator:
    class State
        run
        clear
        reset
        properties: t, dt, ...

standardmodels

populations:
    class ID
    
    class Population
        _simulator = simulator
        _recorder_class = Recorder
        _assembly_class = Assembly
        
        _create_cells
        _set_initial_value_array
        _get_view
        _get_parameters
        _set_parameters
    
    class PopulationView
        _assembly_class = Assembly
        _simulator = simulator
    
        _set_initial_value_array
        _get_view
        _get_parameters
        _set_parameters
    
    class Assembly
        _simulator = simulator
    
projections
    class Connection
    
    class Projection
        _simulator = simulator
        __init__
        __len__
        set
        _convergent_connect

recording
    class Recorder(recording.Recorder):
        _simulator = simulator
        _record
        _get_spiketimes
        _get_all_signals
        (staticmethod) find_units
        _local_count


A walk through the lifecycle of a simulation
============================================


Import phase
------------

[What happens on import]


Setup phase
-----------

[What happens when calling setup()]


Creating neurons
----------------

On creating a Population...

- create default structure, if none specified
- create StandardCellType instance (if using standard cells)
    - check and translate parameters, translated parameters stored in parameters attribute
- create recorders
- create neurons, determine local_mask


Finally, we set initial values for all neurons' state variables, e.g. membrane
potential. The user may set these values later with a call to the initialize()
method, but in case they don't we set them here to default values. Defaults are
set on a model-by-model basis: each StandardCellType subclass has a dictionary
attribute called default_initial_values. [For now, these must be numeric values.
It would be nice to allow them to be the names of parameters, allowing the
initial membrane potential to be set to the resting membrane potential, for
example]. This of course causes a problem - not yet resolved - for non
standard cells. These initial values are immediately passed through to the
simulator. We set initial values using the initialize() method, which in turn
updates the initial_values attribute - we do not modify initial_values directly:
probably it should be read-only.


Creating connectors
-------------------


Composing synaptic plasticity models
------------------------------------



Connecting neurons
------------------


Instrumenting the network
-------------------------


Running a simulation
--------------------


Retrieving/saving recorded data
-------------------------------


Finishing up, or resetting for a new run
----------------------------------------