1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
"""
Simple network with a 1D population of poisson spike sources
projecting to a 2D population of IF_curr_exp neurons.
Andrew Davison, UNIC, CNRS
August 2006, November 2009
"""
from pyNN.random import NumpyRNG, RandomDistribution
import socket
import os
from importlib import import_module
import numpy as np
from pyNN.utility import get_script_args, init_logging, normalized_filename
simulator_name = get_script_args(1)[0]
sim = import_module("pyNN.%s" % simulator_name)
init_logging(None, debug=True)
seed = 764756387
rng = NumpyRNG(seed=seed, parallel_safe=True)
tstop = 1000.0 # ms
input_rate = 100.0 # Hz
cell_params = {'tau_refrac': 2.0, # ms
'v_thresh': -50.0, # mV
'tau_syn_E': 2.0, # ms
'tau_syn_I': 2.0, # ms
'tau_m': RandomDistribution('uniform', low=18.0, high=22.0, rng=rng)
}
n_record = 3
node = sim.setup(timestep=0.025, min_delay=1.0, max_delay=1.0, debug=True, quit_on_end=False)
print("Process with rank %d running on %s" % (node, socket.gethostname()))
print("[%d] Creating populations" % node)
n_spikes = int(2 * tstop * input_rate / 1000.0)
spike_times = np.add.accumulate(rng.next(n_spikes, 'exponential',
{'beta': 1000.0 / input_rate}))
input_population = sim.Population(10, sim.SpikeSourceArray(spike_times=spike_times), label="input")
output_population = sim.Population(20, sim.IF_curr_exp(**cell_params), label="output")
print("[%d] input_population cells: %s" % (node, input_population.local_cells))
print("[%d] output_population cells: %s" % (node, output_population.local_cells))
print("tau_m =", output_population.get('tau_m'))
print("[%d] Connecting populations" % node)
connector = sim.FixedProbabilityConnector(0.5, rng=rng)
syn = sim.StaticSynapse(weight=1.0)
projection = sim.Projection(input_population, output_population, connector, syn)
filename = normalized_filename("Results", "simpleRandomNetwork", "conn",
simulator_name, sim.num_processes())
projection.save('connections', filename)
input_population.record('spikes')
output_population.record('spikes')
output_population.sample(n_record, rng).record('v')
print("[%d] Running simulation" % node)
sim.run(tstop)
print("[%d] Writing spikes and Vm to disk" % node)
filename = normalized_filename("Results", "simpleRandomNetwork_output", "pkl",
simulator_name, sim.num_processes())
output_population.write_data(filename, annotations={'script_name': __file__})
##input_population.write_data('%s_input.h5' % file_stem)
spike_counts = output_population.get_spike_counts()
for id in sorted(spike_counts):
print(id, spike_counts[id])
print("[%d] Finishing" % node)
sim.end()
print("[%d] Done" % node)
|