1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
"""
Simple network with a 1D population of poisson spike sources
projecting to a 2D population of IF_curr_exp neurons.
Andrew Davison, UNIC, CNRS
August 2006, November 2009
"""
from pyNN.random import NumpyRNG
import socket
import os
import csa
import numpy as np
from pyNN.utility import get_script_args, Timer
simulator_name = get_script_args(1)[0]
exec("from pyNN.%s import *" % simulator_name)
timer = Timer()
seed = 764756387
tstop = 1000.0 # ms
input_rate = 100.0 # Hz
cell_params = {'tau_refrac': 2.0, # ms
'v_thresh': -50.0, # mV
'tau_syn_E': 2.0, # ms
'tau_syn_I': 2.0} # ms
n_record = 5
node = setup(timestep=0.025, min_delay=1.0, max_delay=10.0, debug=True, quit_on_end=False)
print("Process with rank %d running on %s" % (node, socket.gethostname()))
rng = NumpyRNG(seed=seed, parallel_safe=True)
print("[%d] Creating populations" % node)
n_spikes = int(2 * tstop * input_rate / 1000.0)
spike_times = np.add.accumulate(rng.next(n_spikes, 'exponential',
{'beta': 1000.0 / input_rate}, mask_local=False))
input_population = Population(100, SpikeSourceArray(spike_times=spike_times), label="input")
output_population = Population(10, IF_curr_exp(**cell_params), label="output")
print("[%d] input_population cells: %s" % (node, input_population.local_cells))
print("[%d] output_population cells: %s" % (node, output_population.local_cells))
print("[%d] Connecting populations" % node)
timer.start()
connector = CSAConnector(csa.random(0.5))
syn = StaticSynapse(weight=0.1)
projection = Projection(input_population, output_population, connector, syn)
print(connector.describe(), timer.elapsedTime())
file_stem = "Results/simpleRandomNetwork_csa_np%d_%s" % (num_processes(), simulator_name)
projection.save('all', '%s.conn' % file_stem)
input_population.record('spikes')
output_population.record('spikes')
output_population.sample(n_record, rng).record('v')
print("[%d] Running simulation" % node)
run(tstop)
print("[%d] Writing spikes and Vm to disk" % node)
output_population.write_data('%s_output.pkl' % file_stem)
#input_population.write_data('%s_input.pkl' % file_stem)
print("[%d] Finishing" % node)
end()
print("[%d] Done" % node)
|