1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
# coding: utf-8
"""
This script is a modified version of http://neuralensemble.org/trac/PyNN/wiki/Examples/VogelsAbbott
An implementation of benchmarks 1 and 2 from
Brette et al. (2007) Journal of Computational Neuroscience 23: 349-398
simulator_name
The IF network is based on the CUBA and COBA models of Vogels & Abbott
(J. Neurosci, 2005). The model consists of a network of excitatory and
inhibitory neurons, connected via current-based "exponential"
synapses (instantaneous rise, exponential decay).
Andrew Davison, UNIC, CNRS
August 2006
Author: Bernhard Kaplan, bkaplan@kth.se
"""
import time
t0 = time.time()
# to store timing information
from pyNN.utility import Timer
timer = Timer()
timer.start()
times = {}
times['t_startup'] = time.time() - t0
# check imports
import numpy as np
import os
import socket
from math import *
import json
from pyNN.utility import get_script_args
simulator_name = 'nest'
from pyNN.nest import *
#exec("from pyNN.%s import *" % simulator_name)
try:
from mpi4py import MPI
USE_MPI = True
comm = MPI.COMM_WORLD
node_id, n_proc = comm.rank, comm.size
print("USE_MPI:", USE_MPI, 'pc_id, n_proc:', node_id, n_proc)
except:
USE_MPI = False
node_id, n_proc, comm = 0, 1, None
print("MPI not used")
from pyNN.random import NumpyRNG, RandomDistribution
times['t_import'] = timer.diff()
# === DEFINE PARAMETERS
benchmark = "COBA"
rngseed = 98765
parallel_safe = True
np = num_processes()
folder_name = 'Results_PyNN_FixedNumberPost_np%d/' % (np)
gather = False # gather spikes and membrane potentials on one process
times_fn = 'pynn_times_FixedNumberPost_gather%d_np%d.dat' % (gather, np)
n_cells = 200 * np
r_ei = 4.0 # number of excitatory cells:number of inhibitory cells
n_exc = int(round((n_cells * r_ei / (1 + r_ei)))) # number of excitatory cells
n_inh = n_cells - n_exc # number of inhibitory cells
n_cells_to_record = np
n_conn_out = 1000 # number of outgoing connections per neuron
weight = 1e-8 # connection weights
f_noise_exc = 3000.
f_noise_inh = 2000.
w_noise_exc = 1e-3
w_noise_inh = 1e-3
dt = 0.1 # (ms) simulation timestep
t_sim = 1000 # (ms) simulaton duration
delay = 1 * dt
# === SETUP
node_id = setup(timestep=dt, min_delay=delay, max_delay=delay)
times['t_setup'] = timer.diff()
host_name = socket.gethostname()
print("Host #%d is on %s" % (node_id + 1, host_name))
# === CREATE
print("%s Creating cell populations..." % node_id)
#celltype = IF_cond_exp
exc_cells = Population(n_exc, IF_cond_exp(), label="Excitatory_Cells")
inh_cells = Population(n_inh, IF_cond_exp(), label="Inhibitory_Cells")
times['t_create'] = timer.diff()
print("Creating noise sources ...")
exc_noise_in_exc = Population(n_exc, SpikeSourcePoisson, {'rate': f_noise_exc})
inh_noise_in_exc = Population(n_exc, SpikeSourcePoisson, {'rate': f_noise_inh})
exc_noise_in_inh = Population(n_inh, SpikeSourcePoisson, {'rate': f_noise_exc})
inh_noise_in_inh = Population(n_inh, SpikeSourcePoisson, {'rate': f_noise_inh})
times['t_create_noise'] = timer.diff()
print("%s Initialising membrane potential to random values..." % node_id)
rng = NumpyRNG(seed=rngseed, parallel_safe=parallel_safe)
uniformDistr = RandomDistribution('uniform', [-50, -70], rng=rng)
exc_cells.initialize(v=uniformDistr)
inh_cells.initialize(v=uniformDistr)
times['t_vinit'] = timer.diff()
print("%s Connecting populations..." % node_id)
ee_conn = FixedNumberPostConnector(n_conn_out) # , weights=weight, delays=delay)
ei_conn = FixedNumberPostConnector(n_conn_out) # , weights=weight, delays=delay)
ie_conn = FixedNumberPostConnector(n_conn_out) # , weights=weight, delays=delay)
ii_conn = FixedNumberPostConnector(n_conn_out) # , weights=weight, delays=delay)
times['t_connector'] = timer.diff()
connections = {}
connections['e2e'] = Projection(exc_cells, exc_cells, ee_conn, receptor_type='excitatory') # , rng=rng)
connections['e2i'] = Projection(exc_cells, inh_cells, ei_conn, receptor_type='excitatory') # , rng=rng)
connections['i2e'] = Projection(inh_cells, exc_cells, ie_conn, receptor_type='inhibitory') # , rng=rng)
connections['i2i'] = Projection(inh_cells, inh_cells, ii_conn, receptor_type='inhibitory') # , rng=rng)
connections['e2e'].set(weight=weight)
connections['e2i'].set(weight=weight)
connections['i2e'].set(weight=weight)
connections['i2i'].set(weight=weight)
times['t_projection'] = timer.diff()
exc_noise_connector = OneToOneConnector()
inh_noise_connector = OneToOneConnector()
noise_ee_prj = Projection(exc_noise_in_exc, exc_cells, exc_noise_connector, receptor_type="excitatory")
noise_ei_prj = Projection(exc_noise_in_inh, inh_cells, exc_noise_connector, receptor_type="excitatory")
noise_ie_prj = Projection(inh_noise_in_exc, exc_cells, inh_noise_connector, receptor_type="inhibitory")
noise_ii_prj = Projection(inh_noise_in_inh, inh_cells, inh_noise_connector, receptor_type="inhibitory")
noise_ee_prj.set(weight=w_noise_exc)
noise_ei_prj.set(weight=w_noise_exc)
noise_ie_prj.set(weight=w_noise_inh)
noise_ii_prj.set(weight=w_noise_inh)
times['t_connect_noise'] = timer.diff()
# === Setup recording ==========================================================
print("%s Setting up recording..." % node_id)
exc_cells.record('spikes')
inh_cells.record('spikes')
cells_to_record = range(n_cells_to_record)
exc_cells[list(cells_to_record)].record_v()
times['t_record'] = timer.diff()
print("%d Print(exc spikes to file..." % node_id)
if not(os.path.isdir(folder_name)) and (rank() == 0):
os.mkdir(folder_name)
# === Save connections to file =================================================
#print("%s Saving projections ..." % node_id
#for prj in connections.keys():
# connections[prj].saveConnections('%s/VAbenchmark_%s_%s_%s_np%d.conn' % (folder_name, benchmark, prj, simulator_name, np))
#times['t_save_connections'] = timer.diff()
# === Run simulation ===========================================================
print("%d Running simulation..." % node_id)
run(t_sim)
times['t_run'] = timer.diff()
# === Print(results to file ====================================================
exc_spike_fn = "%s/VAbenchmark_%s_exc_%s_np%d_%d.pkl" % (folder_name, benchmark, simulator_name, np, node_id)
exc_cells.printSpikes(exc_spike_fn, gather=gather)
print("%d Print(inh spikes to file..." % node_id)
inh_spike_fn = "%s/VAbenchmark_%s_inh_%s_np%d_%d.pkl" % (folder_name, benchmark, simulator_name, np, node_id)
inh_cells.printSpikes(inh_spike_fn, gather=gather)
print("%d Print(voltage to file..." % node_id)
exc_cells[list(cells_to_record)].print_v("%s/VAbenchmark_%s_exc_%s_np%d_%d.pkl" % (folder_name, benchmark, simulator_name, np, node_id), gather=gather)
times['t_printSpikes'] = timer.diff()
# === Load spike file and calculate conductances ====================
#exc_spikes = np.loadtxt(exc_spike_fn)
#E_count = exc_cells.meanSpikeCount()
#I_count = inh_cells.meanSpikeCount()
#f_exc = E_count*1000.0/t_sim
#f_inh = I_count*1000.0/t_sim
#g_ee = f_exc * w_ee * tau_exc * connections['e2e'].size() / n_exc
#g_ei = f_exc * w_ei * tau_exc * connections['e2i'].size() / n_exc
#g_ie = f_inh * w_ie * tau_inh * connections['i2e'].size() / n_inh
#g_ii = f_inh * w_ii * tau_inh * connections['i2i'].size() / n_inh
connections_string = "%d e→e %d e→i %d i→e %d i→i" % (connections['e2e'].size(),
connections['e2i'].size(),
connections['i2e'].size(),
connections['i2i'].size())
n_total = connections['e2e'].size() + connections['e2i'].size() + connections['i2e'].size() + connections['i2i'].size()
n_connections = connections['e2e'].size() + connections['e2i'].size() + connections['i2e'].size() + connections['i2i'].size()
n_conn_ee, n_conn_ei, n_conn_ie, n_conn_ii = connections['e2e'].size(), connections['e2i'].size(), connections['i2e'].size(), connections['i2i'].size()
times['t_analysis'] = timer.diff()
if node_id == 0:
print("\n--- Vogels-Abbott Network Simulation ---")
print("Nodes : %d" % np)
print("Simulation type : %s" % benchmark)
print("Simulator name : %s" % simulator_name)
print("Number of Neurons : %d n_exc %d n_inh %d" % (n_cells, n_exc, n_inh))
print("Number of Synapses : %s" % connections_string)
print("Total Num Synapses : %s" % n_total)
# print("Excitatory rate : %g Hz" % f_exc)
# print("Inhibitory rate : %g Hz" % f_inh)
# print(timing_info)
print("%d PyNN end" % node_id)
end()
print("%d PyNN end finish" % node_id)
times['t_end'] = timer.diff()
if node_id == 0:
t_all = 0.
for k in times.keys():
t_all += times[k]
times['t_sum'] = t_all
times['n_exc'] = n_exc
times['n_inh'] = n_inh
times['n_cells'] = n_cells
times['n_proc'] = np
times['n_ee'] = n_conn_ee
times['n_ei'] = n_conn_ei
times['n_ie'] = n_conn_ie
times['n_ii'] = n_conn_ii
times['n_connections'] = n_connections
f = file(times_fn, 'w')
json.dump(times, f)
|